Exercise 4.1

Question 1:

Evaluate the determinants in Exercises 1 and 2.

Answer

$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$$

Question 2:

Evaluate the determinants in Exercises 1 and 2.

(i)
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$
 (ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$

Answer

(i)
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = (\cos \theta)(\cos \theta) - (-\sin \theta)(\sin \theta) = \cos^2 \theta + \sin^2 \theta = 1$$

(ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} = (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$
 $= x^3 - x^2 + x + x^2 - x + 1 - (x^2 - 1)$
 $= x^3 + 1 - x^2 + 1$
 $= x^3 - x^2 + 2$

Question 3:

If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$$
, then show that $|2A| = 4|A|$

Answer

The given matrix is $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$

$$\therefore 2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$$

$$\therefore$$
 L.H.S. = $\begin{vmatrix} 2A \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix} = 2 \times 4 - 4 \times 8 = 8 - 32 = -24$

Now,
$$|A| = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} = 1 \times 2 - 2 \times 4 = 2 - 8 = -6$$

$$\therefore$$
 R.H.S. = $4|A| = 4 \times (-6) = -24$

$$\therefore$$
 L.H.S. = R.H.S.

Ouestion 4:

If
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
, then show that $|3A| = 27|A|$.

Answer

The given matrix is
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column (C_1) for easier calculation.

$$|A| = 1 \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 0 & 4 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = 1(4-0) - 0 + 0 = 4$$

$$\therefore 27|A| = 27(4) = 108$$
 ...(i)

Now,
$$3A = 3\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{bmatrix}$$

$$|3A| = 3 \begin{vmatrix} 3 & 6 \\ 0 & 12 \end{vmatrix} - 0 \begin{vmatrix} 0 & 3 \\ 0 & 12 \end{vmatrix} + 0 \begin{vmatrix} 0 & 3 \\ 3 & 6 \end{vmatrix}$$

$$= 3(36 - 0) = 3(36) = 108 \qquad ...(ii)$$

From equations (i) and (ii), we have:

$$|3A| = 27|A|$$

Hence, the given result is proved.

Question 5:

Evaluate the determinants

(i)
$$\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$
 (iii) $\begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$

(ii)
$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix}$$
 (iv) $\begin{bmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}$

Answer

(i) Let
$$A = \begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

$$|A| = -0 \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & -2 \\ 3 & 0 \end{vmatrix} - (-1) \begin{vmatrix} 3 & -1 \\ 3 & -5 \end{vmatrix} = (-15+3) = -12$$

(ii) Let
$$A = \begin{bmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{bmatrix}$$

By expanding along the first row, we have:

$$|A| = 3 \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} + 4 \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$$
$$= 3(1+6) + 4(1+4) + 5(3-2)$$
$$= 3(7) + 4(5) + 5(1)$$
$$= 21 + 20 + 5 = 46$$

(iii) Let
$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$
.

By expanding along the first row, we have:

$$|A| = 0 \begin{vmatrix} 0 & -3 \\ 3 & 0 \end{vmatrix} - 1 \begin{vmatrix} -1 & -3 \\ -2 & 0 \end{vmatrix} + 2 \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix}$$
$$= 0 - 1(0 - 6) + 2(-3 - 0)$$
$$= -1(-6) + 2(-3)$$
$$= 6 - 6 = 0$$
$$\begin{bmatrix} 2 & -1 & -2 \end{bmatrix}$$

(iv) Let
$$A = \begin{bmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}$$
.

By expanding along the first column, we have:

$$|A| = 2 \begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix} - 0 \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 3 \begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix}$$
$$= 2(0-5) - 0 + 3(1+4)$$
$$= -10 + 15 = 5$$

Question 6:

If
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}$$
, find $|A|$.

Answer

Let
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}$$
.

By expanding along the first row, we have:

$$|A| = 1 \begin{vmatrix} 1 & -3 \\ 4 & -9 \end{vmatrix} - 1 \begin{vmatrix} 2 & -3 \\ 5 & -9 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 5 & 4 \end{vmatrix}$$

$$= 1(-9+12) - 1(-18+15) - 2(8-5)$$

$$= 1(3) - 1(-3) - 2(3)$$

$$= 3+3-6$$

$$= 6-6$$

$$= 0$$

Question 7:

Find values of x, if

(i)
$$\begin{vmatrix} 2 & 4 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$
 (ii) $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$

Answer

(i)
$$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$

$$\Rightarrow 2 \times 1 - 5 \times 4 = 2x \times x - 6 \times 4$$

$$\Rightarrow 2 - 20 = 2x^2 - 24$$

$$\Rightarrow 2x^2 = 6$$

$$\Rightarrow x^2 = 3$$

$$\Rightarrow x = \pm \sqrt{3}$$
(ii)
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$

$$\Rightarrow 2 \times 5 - 3 \times 4 = x \times 5 - 3 \times 2x$$

$$\Rightarrow 10 - 12 = 5x - 6x$$

$$\Rightarrow -2 = -x$$

$$\Rightarrow x = 2$$

Question 8:

If
$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
, then x is equal to

(A) 6 (B)
$$\pm$$
6 (C) $-$ 6 (D) 0

Answer

Answer: B

$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$

$$\Rightarrow$$
 $x^2 - 36 = 36 - 36$

$$\Rightarrow x^2 - 36 = 0$$

$$\Rightarrow x^2 = 36$$

$$\Rightarrow x = \pm 6$$

Hence, the correct answer is B.