Exercise 4.3

Question 1:

Find area of the triangle with vertices at the point given in each of the following:
(i) $(1,0),(6,0),(4,3)$ (ii) $(2,7),(1,1),(10,8)$
(iii) $(-2,-3),(3,2),(-1,-8)$

Answer
(i) The area of the triangle with vertices $(1,0),(6,0),(4,3)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
1 & 0 & 1 \\
6 & 0 & 1 \\
4 & 3 & 1
\end{array}\right| \\
& =\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)] \\
& =\frac{1}{2}[-3+18]=\frac{15}{2} \text { square units }
\end{aligned}
$$

(ii) The area of the triangle with vertices $(2,7),(1,1),(10,8)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(1-8)-7(1-10)+1(8-10)] \\
& =\frac{1}{2}[2(-7)-7(-9)+1(-2)] \\
& =\frac{1}{2}[-14+63-2]=\frac{1}{2}[-16+63] \\
& =\frac{47}{2} \text { square units }
\end{aligned}
$$

(iii) The area of the triangle with vertices $(-2,-3),(3,2),(-1,-8)$
is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{rrr}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(2+8)+3(3+1)+1(-24+2)] \\
& =\frac{1}{2}[-2(10)+3(4)+1(-22)] \\
& =\frac{1}{2}[-20+12-22] \\
& =-\frac{30}{2}=-15
\end{aligned}
$$

Hence, the area of the triangle is $|-15|=15$ square units.

Question 2:

Show that points
$\mathrm{A}(a, b+c), \mathrm{B}(b, c+a), \mathrm{C}(c, a+b)$ are collinear

Answer

Area of $\triangle A B C$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right| \\
& =\frac{1}{2}\left|\begin{array}{ccc}
a & b+c & 1 \\
b-a & a-b & 0 \\
c-a & a-c & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\right) \\
& =\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right| \\
& =\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}\right) \\
& \left.=0 \quad \text { (All elements of } \mathrm{R}_{3} \text { are } 0\right)
\end{aligned}
$$

Thus, the area of the triangle formed by points A, B, and C is zero.

Hence, the points A, B, and C are collinear.

Question 3:

Find values of k if area of triangle is 4 square units and vertices are
(i) $(k, 0),(4,0),(0,2)(i i)(-2,0),(0,4),(0, k)$

Answer
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is the absolute value of the determinant (Δ), where
$\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
It is given that the area of triangle is 4 square units.
$\therefore \Delta= \pm 4$.
(i) The area of the triangle with vertices $(k, 0),(4,0),(0,2)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right| \\
& =\frac{1}{2}[k(0-2)-0(4-0)+1(8-0)] \\
& =\frac{1}{2}[-2 k+8]=-k+4
\end{aligned}
$$

$$
\therefore-k+4= \pm 4
$$

When $-k+4=-4, k=8$.
When $-k+4=4, k=0$.
Hence, $k=0,8$.
(ii) The area of the triangle with vertices $(-2,0),(0,4),(0, k)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
-2 & 0 & 1 \\
0 & 4 & 1 \\
0 & k & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(4-k)] \\
& =k-4
\end{aligned}
$$

$\therefore k-4= \pm 4$

When $k-4=-4, k=0$.
When $k-4=4, k=8$.
Hence, $k=0,8$.

Question 4:

(i) Find equation of line joining $(1,2)$ and $(3,6)$ using determinants
(ii) Find equation of line joining $(3,1)$ and $(9,3)$ using determinants

Answer
(i) Let $P(x, y)$ be any point on the line joining points $A(1,2)$ and $B(3,6)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle $A B P$ will be zero.
$\therefore \frac{1}{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1\end{array}\right|=0$
$\Rightarrow \frac{1}{2}[1(6-y)-2(3-x)+1(3 y-6 x)]=0$
$\Rightarrow 6-y-6+2 x+3 y-6 x=0$
$\Rightarrow 2 y-4 x=0$
$\Rightarrow y=2 x$
Hence, the equation of the line joining the given points is $y=2 x$.
(ii) Let $\mathrm{P}(x, y)$ be any point on the line joining points $\mathrm{A}(3,1)$ and
$B(9,3)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle $A B P$ will be zero.

$$
\begin{aligned}
& \therefore \frac{1}{2}\left|\begin{array}{lll}
3 & 1 & 1 \\
9 & 3 & 1 \\
x & y & 1
\end{array}\right|=0 \\
& \Rightarrow \frac{1}{2}[3(3-y)-1(9-x)+1(9 y-3 x)]=0 \\
& \Rightarrow 9-3 y-9+x+9 y-3 x=0 \\
& \Rightarrow 6 y-2 x=0 \\
& \Rightarrow x-3 y=0
\end{aligned}
$$

Hence, the equation of the line joining the given points is $x-3 y=0$.

Question 5:

If area of triangle is 35 square units with vertices $(2,-6),(5,4)$, and $(k, 4)$. Then k is
A. 12
B. -2
C. $-12,-2$
D. $12,-2$

Answer

Answer: D

The area of the triangle with vertices $(2,-6),(5,4)$, and $(k, 4)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & -6 & 1 \\
5 & 4 & 1 \\
k & 4 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(4-4)+6(5-k)+1(20-4 k)] \\
& =\frac{1}{2}[30-6 k+20-4 k] \\
& =\frac{1}{2}[50-10 k] \\
& =25-5 k
\end{aligned}
$$

It is given that the area of the triangle is ± 35.
Therefore, we have:

$$
\begin{aligned}
& \Rightarrow 25-5 k= \pm 35 \\
& \Rightarrow 5(5-k)= \pm 35 \\
& \Rightarrow 5-k= \pm 7
\end{aligned}
$$

When $5-k=-7, k=5+7=12$.
When $5-k=7, k=5-7=-2$.
Hence, $k=12,-2$.
The correct answer is D .

