Exercise 4.4

Question 1:

Write Minors and Cofactors of the elements of following determinants:
(i) $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$ (ii) $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$

Answer
(i) The given determinant is $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$.

Minor of element $a_{i j}$ is $M_{i j}$.
$\therefore \mathrm{M}_{11}=$ minor of element $a_{11}=3$
$M_{12}=$ minor of element $a_{12}=0$
$M_{21}=$ minor of element $a_{21}=-4$
$M_{22}=$ minor of element $a_{22}=2$
Cofactor of $a_{i j}$ is $\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$.
$\therefore \mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2}(3)=3$
$A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(0)=0$
$A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(-4)=4$
$A_{22}=(-1)^{2+2} M_{22}=(-1)^{4}(2)=2$
(ii) The given determinant is $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$.

Minor of element $a_{i j}$ is $M_{i j}$.
$\therefore \mathrm{M}_{11}=$ minor of element $a_{11}=d$
$M_{12}=$ minor of element $a_{12}=b$
$M_{21}=$ minor of element $a_{21}=c$
$M_{22}=$ minor of element $a_{22}=a$
Cofactor of $a_{i j}$ is $A_{i j}=(-1)^{i+j} M_{i j}$.
$\therefore \mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2}(d)=d$
$A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(b)=-b$
$A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(c)=-c$
$A_{22}=(-1)^{2+2} M_{22}=(-1)^{4}(a)=a$

Question 2:
(i) $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$ (ii) $\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$

Answer
(i) The given determinant is $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$.

By the definition of minors and cofactors, we have:
$M_{11}=$ minor of $a_{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$M_{12}=$ minor of $a_{12}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$

$$
\begin{aligned}
& M_{13}=\text { minor of } a_{13}=\left|\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right|=0 \\
& M_{21}=\text { minor of } a_{21}=\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|=0 \\
& M_{22}=\text { minor of } a_{22}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \\
& M_{23}=\text { minor of } a_{23}=\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|=0 \\
& M_{31}=\text { minor of } a_{31}=\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right|=0 \\
& M_{32}=\text { minor of } a_{32}=\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|=0 \\
& M_{33}=\text { minor of } a_{33}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \\
& A_{11}=\text { cofactor of } a_{11}=(-1)^{1+1} M_{11}=1 \\
& A_{12}=\text { cofactor of } a_{12}=(-1)^{1+2} M_{12}=0 \\
& A_{13}=\text { cofactor of } a_{13}=(-1)^{1+3} M_{13}=0 \\
& A_{21}=\text { cofactor of } a_{21}=(-1)^{2+1} M_{21}=0 \\
& \mathrm{~A}_{22}=\text { cofactor of } a_{22}=(-1)^{2+2} M_{22}=1 \\
& \mathrm{~A}_{23}=\text { cofactor of } a_{23}=(-1)^{2+3} M_{23}=0 \\
& A_{31}=\text { cofactor of } a_{31}=(-1)^{3+1} \quad M_{31}=0 \\
& A_{32}=\text { cofactor of } a_{32}=(-1)^{3+2} M_{32}=0 \\
& A_{33}=\text { cofactor of } a_{33}=(-1)^{3+3} M_{33}=1 \\
& \text { (ii) The given determinant is }\left|\begin{array}{rrr}
1 & 0 & 4 \\
3 & 5 & -1 \\
0 & 1 & 2
\end{array}\right|
\end{aligned}
$$

By definition of minors and cofactors, we have:
$M_{11}=$ minor of $a_{11}=\left|\begin{array}{cc}5 & -1 \\ 1 & 2\end{array}\right|=10+1=11$

$$
\begin{aligned}
& M_{12}=\text { minor of } a_{12}=\left|\begin{array}{ll}
3 & -1 \\
0 & 2
\end{array}\right|=6-0=6 \\
& M_{13}=\text { minor of } a_{13}=\left|\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right|=3-0=3 \\
& M_{21}=\text { minor of } a_{21}=\left|\begin{array}{ll}
0 & 4 \\
1 & 2
\end{array}\right|=0-4=-4 \\
& M_{22}=\text { minor of } a_{22}=\left|\begin{array}{ll}
1 & 4 \\
0 & 2
\end{array}\right|=2-0=2 \\
& M_{23}=\text { minor of } a_{23}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1 \\
& M_{31}=\text { minor of } a_{31}=\left|\begin{array}{cc}
0 & 4 \\
5 & -1
\end{array}\right|=0-20=-20 \\
& M_{32}=\text { minor of } a_{32}=\left|\begin{array}{ll}
1 & 4 \\
3 & -1
\end{array}\right|=-1-12=-13 \\
& M_{33}=\text { minor of } a_{33}=\left|\begin{array}{ll}
1 & 0 \\
3 & 5
\end{array}\right|=5-0=5 \\
& A_{11}=\text { cofactor of } a_{11}=(-1)^{1+1} M_{11}=11 \\
& A_{12}=\text { cofactor of } a_{12}=(-1)^{1+2} M_{12}=-6 \\
& A_{13}=\text { cofactor of } a_{13}=(-1)^{1+3} M_{13}=3 \\
& A_{21}=\text { cofactor of } a_{21}=(-1)^{2+1} M_{21}=4 \\
& A_{22}=\text { cofactor of } a_{22}=(-1)^{2+2} M_{22}=2 \\
& A_{23}=\text { cofactor of } a_{23}=(-1)^{2+3} M_{23}=-1 \\
& A_{31}=\text { cofactor of } a_{31}=(-1)^{3+1} M_{31}=-20 \\
& A_{32}=\text { cofactor of } a_{32}=(-1)^{3+2} M_{32}=13 \\
& A_{33}=\text { cofactor of } a_{33}=(-1)^{3+3} M_{33}=5
\end{aligned}
$$

Question 3:

The given determinant is $\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$.
We have:
$M_{21}=\left|\begin{array}{ll}3 & 8 \\ 2 & 3\end{array}\right|=9-16=-7$
$\therefore A_{21}=$ cofactor of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=7$
$M_{22}=\left|\begin{array}{ll}5 & 8 \\ 1 & 3\end{array}\right|=15-8=7$
$\therefore \mathrm{A}_{22}=$ cofactor of $a_{22}=(-1)^{2+2} \mathrm{M}_{22}=7$
$M_{23}=\left|\begin{array}{ll}5 & 3 \\ 1 & 2\end{array}\right|=10-3=7$
$\therefore \mathrm{A}_{23}=$ cofactor of $a_{23}=(-1)^{2+3} \mathrm{M}_{23}=-7$

We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$
\therefore \Delta=a_{21} \mathrm{~A}_{21}+a_{22} \mathrm{~A}_{22}+a_{23} \mathrm{~A}_{23}=2(7)+0(7)+1(-7)=14-7=7
$$

Question 4:

Using Cofactors of elements of third column, evaluate $\Delta=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ \text { Answer } & z & x y\end{array}\right|$
The given determinant is $\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$.
We have:
$M_{13}=\left|\begin{array}{ll}1 & y \\ 1 & z\end{array}\right|=z-y$
$M_{23}=\left|\begin{array}{ll}1 & x \\ 1 & z\end{array}\right|=z-x$
$M_{33}=\left|\begin{array}{ll}1 & x \\ 1 & y\end{array}\right|=y-x$
$\therefore \mathrm{A}_{13}=$ cofactor of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=(z-y)$
$A_{23}=$ cofactor of $a_{23}=(-1)^{2+3} M_{23}=-(z-x)=(x-z)$
$\mathrm{A}_{33}=$ cofactor of $a_{33}=(-1)^{3+3} M_{33}=(y-x)$
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$
\begin{aligned}
\therefore \Delta & =a_{13} \mathrm{~A}_{13}+a_{23} \mathrm{~A}_{23}+a_{33} \mathrm{~A}_{33} \\
& =y z(z-y)+z x(x-z)+x y(y-x) \\
& =y z^{2}-y^{2} z+x^{2} z-x z^{2}+x y^{2}-x^{2} y \\
& =\left(x^{2} z-y^{2} z\right)+\left(y z^{2}-x z^{2}\right)+\left(x y^{2}-x^{2} y\right) \\
& =z\left(x^{2}-y^{2}\right)+z^{2}(y-x)+x y(y-x) \\
& =z(x-y)(x+y)+z^{2}(y-x)+x y(y-x) \\
& =(x-y)\left[z x+z y-z^{2}-x y\right] \\
& =(x-y)[z(x-z)+y(z-x)] \\
& =(x-y)(z-x)[-z+y] \\
& =(x-y)(y-z)(z-x)
\end{aligned}
$$

Hence, $\Delta=(x-y)(y-z)(z-x)$.

Question 5:

For the matrices A and B, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$ where
(i) $A=\left[\begin{array}{r}1 \\ -4 \\ 3\end{array}\right], B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$
(ii) $A=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], B=\left[\begin{array}{lll}1 & 5 & 7\end{array}\right]$

Answer
(i) $A B=\left[\begin{array}{r}1 \\ -4 \\ 3\end{array}\right]\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]=\left[\begin{array}{rrr}-1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3\end{array}\right]$
$\therefore(A B)^{\prime}=\left[\begin{array}{rrr}-1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3\end{array}\right]$
Now, $A^{\prime}=\left[\begin{array}{lll}1 & -4 & 3\end{array}\right], B^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$
$\therefore B^{\prime} A^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{lll}1 & -4 & 3\end{array}\right]=\left[\begin{array}{rrr}-1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3\end{array}\right]$

Hence, we have verified that $(A B)^{\prime}=B^{\prime} A^{\prime}$.
(ii) $A B=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & 5 & 7\end{array}\right]=\left[\begin{array}{rrr}0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14\end{array}\right]$
$\therefore(A B)^{\prime}=\left[\begin{array}{llr}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right]$

Now, $A^{\prime}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right], B^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right]$
$\therefore B^{\prime} A^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right]\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]=\left[\begin{array}{rrr}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right]$

Hence, we have verified that $(A B)^{\prime}=B^{\prime} A^{\prime}$.
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$.
We have,
$|A|=2(-1-0)-1(4-0)+3(8-7)$

$$
\begin{aligned}
& =2(-1)-1(4)+3(1) \\
& =-2-4+3 \\
& =-3
\end{aligned}
$$

Now,
$A_{11}=-1-0=-1, A_{12}=-(4-0)=-4, A_{13}=8-7=1$
$A_{21}=-(1-6)=5, A_{22}=2+21=23, A_{23}=-(4+7)=-11$
$A_{31}=0+3=3, A_{32}=-(0-12)=12, A_{33}=-2-4=-6$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$

Question 10:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
Answer

