Exercise 4.5

Question 1:

Find adjoint of each of the matrices.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

We have,

$$A_{11} = 4, A_{12} = -3, A_{21} = -2, A_{22} = 1$$

$$\therefore adjA = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

Question 2:

Find adjoint of each of the matrices.

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$
.

We have,

$$A_{11} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$$

$$A_{12} = -\begin{vmatrix} 2 & 5 \\ -2 & 1 \end{vmatrix} = -(2 + 10) = -12$$

$$A_{13} = \begin{vmatrix} 2 & 3 \\ -2 & 0 \end{vmatrix} = 0 + 6 = 6$$

$$A_{21} = -\begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -(-1-0) = 1$$

$$A_{22} = \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} = 1 + 4 = 5$$

$$A_{23} = -\begin{vmatrix} 1 & -1 \\ -2 & 0 \end{vmatrix} = -(0-2) = 2$$

$$A_{31} = \begin{vmatrix} -1 & 2 \\ 3 & 5 \end{vmatrix} = -5 - 6 = -11$$

$$A_{32} = -\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = -(5-4) = -1$$

$$A_{33} = \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = 3 + 2 = 5$$
Hence, $adjA = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5 \end{bmatrix}$.

Question 3:

Verify
$$A (adj A) = (adj A) A = |A|I$$
.

$$\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

we have,

$$|A| = -12 - (-12) = -12 + 12 = 0$$

$$\therefore |A|I = 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Now.

$$A_{11} = -6, A_{12} = 4, A_{21} = -3, A_{22} = 2$$

$$\therefore adjA = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$$

Now,

$$A(adjA) = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -12+12 & -6+6 \\ 24-24 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Also, $(adjA)A = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$

$$= \begin{bmatrix} -12+12 & -18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence, A(adjA) = (adjA)A = |A|I.

Question 4:

Verify A (adj A) = (adj A) A = |A|I.

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$|A| = 1(0-0)+1(9+2)+2(0-0)=11$$

Now,

$$A_{11} = 0, A_{12} = -(9+2) = -11, A_{13} = 0$$

$$A_{21} = -(-3-0) = 3$$
, $A_{22} = 3-2 = 1$, $A_{23} = -(0+1) = -1$

$$A_{31} = 2 - 0 = 2$$
, $A_{32} = -(-2 - 6) = 8$, $A_{33} = 0 + 3 = 3$

$$\therefore adjA = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

Now,
$$A(adjA) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 & 3+0-3 & 2+0+9 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Also,

Also,

$$(adjA) \cdot A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0+0+0 & 0+2+9 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Hence, A(adjA) = (adjA)A = |A|I.

Question 6:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$
.

we have,

$$|A| = -2 + 15 = 13$$

Now,

$$A_{11} = 2$$
, $A_{12} = 3$, $A_{21} = -5$, $A_{22} = -1$

$$\therefore adjA = \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{13} \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

Question 7:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

Answer

$$Let A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}.$$

We have,

$$|A| = 1(10-0)-2(0-0)+3(0-0)=10$$

Now.

$$A_{11} = 10 - 0 = 10, A_{12} = -(0 - 0) = 0, A_{13} = 0 - 0 = 0$$

 $A_{21} = -(10 - 0) = -10, A_{22} = 5 - 0 = 5, A_{23} = -(0 - 0) = 0$
 $A_{31} = 8 - 6 = 2, A_{32} = -(4 - 0) = -4, A_{33} = 2 - 0 = 2$

$$\therefore adjA = \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\therefore adjA = \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{10} \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

Question 8:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$$

Answer

$$Let A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}.$$

We have,

$$|A| = 1(-3-0)-0+0=-3$$

Now.

$$A_{11} = -3 - 0 = -3$$
, $A_{12} = -(-3 - 0) = 3$, $A_{13} = 6 - 15 = -9$
 $A_{21} = -(0 - 0) = 0$, $A_{22} = -1 - 0 = -1$, $A_{23} = -(2 - 0) = -2$
 $A_{31} = 0 - 0 = 0$, $A_{32} = -(0 - 0) = 0$, $A_{33} = 3 - 0 = 3$

$$\therefore adjA = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

Question 9:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$

Answer

$$Let A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}.$$

We have.

$$|A| = 2(-1-0)-1(4-0)+3(8-7)$$

$$= 2(-1)-1(4)+3(1)$$

$$= -2-4+3$$

$$= -3$$

Now.

$$A_{11} = -1 - 0 = -1$$
, $A_{12} = -(4 - 0) = -4$, $A_{13} = 8 - 7 = 1$
 $A_{21} = -(1 - 6) = 5$, $A_{22} = 2 + 21 = 23$, $A_{23} = -(4 + 7) = -11$
 $A_{31} = 0 + 3 = 3$, $A_{32} = -(0 - 12) = 12$, $A_{33} = -2 - 4 = -6$

$$\therefore adjA = \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\frac{1}{3} \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

Question 10:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$

$$Let A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}.$$

By expanding along C₁, we have:

$$|A| = 1(8-6)-0+3(3-4)=2-3=-1$$

Now,

$$A_{11} = 8 - 6 = 2$$
, $A_{12} = -(0+9) = -9$, $A_{13} = 0 - 6 = -6$
 $A_{21} = -(-4+4) = 0$, $A_{22} = 4 - 6 = -2$, $A_{23} = -(-2+3) = -1$
 $A_{31} = 3 - 4 = -1$, $A_{32} = -(-3-0) = 3$, $A_{33} = 2 - 0 = 2$

$$\therefore adjA = \begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$$

Question 11:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$

$$\operatorname{Let} A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}.$$

We have,

$$|A| = 1(-\cos^2 \alpha - \sin^2 \alpha) = -(\cos^2 \alpha + \sin^2 \alpha) = -1$$

Now.

$$A_{11} = -\cos^2 \alpha - \sin^2 \alpha = -1, A_{12} = 0, A_{13} = 0$$

$$A_{21} = 0, A_{22} = -\cos\alpha, A_{23} = -\sin\alpha$$

$$A_{31} = 0, A_{32} = -\sin\alpha, A_{33} = \cos\alpha$$

$$\therefore adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = -\begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & -\cos\alpha \end{bmatrix}$$

Question 12:

Let
$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Verify that $(AB)^{-1} = B^{-1}A^{-1}$

Answer

Let
$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
.

We have,

$$|A| = 15 - 14 = 1$$

Now,

$$A_{11} = 5, A_{12} = -2, A_{21} = -7, A_{22} = 3$$

$$\therefore adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

Now, let
$$B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
.

We have,

$$|B| = 54 - 56 = -2$$

$$\therefore adjB = \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix}$$

$$\therefore B^{-1} = \frac{1}{|B|} adj B = -\frac{1}{2} \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} & 4 \\ \frac{7}{2} & -3 \end{bmatrix}$$

Now.

$$B^{-1}A^{-1} = \begin{bmatrix} -\frac{9}{2} & 4\\ \frac{7}{2} & -3 \end{bmatrix} \begin{bmatrix} 5 & -7\\ -2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{45}{2} - 8 & \frac{63}{2} + 12\\ \frac{35}{2} + 6 & -\frac{49}{2} - 9 \end{bmatrix} = \begin{bmatrix} -\frac{61}{2} & \frac{87}{2}\\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \qquad \dots (1)$$

Then,

$$AB = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 18+49 & 24+63 \\ 12+35 & 16+45 \end{bmatrix}$$
$$= \begin{bmatrix} 67 & 87 \\ 47 & 61 \end{bmatrix}$$

Therefore, we have $|AB| = 67 \times 61 - 87 \times 47 = 4087 - 4089 = -2$.

Also,

$$adj(AB) = \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

$$\therefore (AB)^{-1} = \frac{1}{|AB|} adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \dots (2)$$

From (1) and (2), we have:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Hence, the given result is proved.

Question 13:

If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I = O$. Hence find A^{-1} . Answer

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

$$A^2 - 5A + 7I$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence, $A^2 - 5A + 7I = 0$.

$$A \cdot A - 5A = -7I$$

$$\Rightarrow A \cdot A(A^{-1}) - 5AA^{-1} = -7IA^{-1} \qquad \left[\text{Post-multiplying by } A^{-1} \text{ as } |A| \neq 0 \right]$$

$$\Rightarrow A(AA^{-1})-5I = -7A^{-1}$$

$$\Rightarrow AI - 5I = -7A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{7}(A - 5I)$$

$$\Rightarrow A^{-1} = \frac{1}{7} (5I - A)$$

$$=\frac{1}{7}\left(\begin{bmatrix}5&&&0\\0&&&5\end{bmatrix}-\begin{bmatrix}3&&1\\-1&&2\end{bmatrix}\right)=\frac{1}{7}\begin{bmatrix}2&&-1\\1&&&3\end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

Question 14:

For the matrix
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$
, find the numbers a and b such that $A^2 + aA + bI = O$. Answer

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

$$\therefore A^2 = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\therefore A^{2} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 9+2 & 6+2 \\ 3+1 & 2+1 \end{bmatrix} = \begin{bmatrix} 11 & 8 \\ 4 & 3 \end{bmatrix}$$

$$A^2 + aA + bI = O$$

$$\Rightarrow$$
 $(AA)A^{-1} + aAA^{-1} + bIA^{-1} = O$

Post-multiplying by A^{-1} as $|A| \neq 0$

$$\Rightarrow A(AA^{-1}) + aI + b(IA^{-1}) = O$$

$$\Rightarrow AI + aI + bA^{-1} = O$$

$$\Rightarrow A + aI = -bA^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{b}(A + aI)$$

Now.

$$A^{-1} = \frac{1}{|A|} adj A = \frac{1}{1} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

We have:

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = -\frac{1}{b} \begin{pmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \end{pmatrix} = -\frac{1}{b} \begin{bmatrix} 3+a & 2 \\ 1 & 1+a \end{bmatrix} = \begin{bmatrix} \frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b} \end{bmatrix}$$

Comparing the corresponding elements of the two matrices, we have:

$$-\frac{1}{b} = -1 \Rightarrow b = 1$$

$$\frac{-3 - a}{b} = 1 \Rightarrow -3 - a = 1 \Rightarrow a = -4$$

Hence, -4 and 1 are the required values of a and b respectively.

Question 15:

For the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
 show that $A^3 - 6A^2 + 5A + 11 I = 0$. Hence, find

Answer
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1+1+2 & 1+2-1 & 1-3+3 \\ 1+2-6 & 1+4+3 & 1-6-9 \\ 2-1+6 & 2-2-3 & 2+3+9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 4+2+2 & 4+4-1 & 4-6+3 \\ -3+8-28 & -3+16+14 & -3-24-42 \\ 7-3+28 & 7-6-14 & 7+9+42 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}$$

$$A^3 - 6A^2 + 5A + 11I$$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{bmatrix} - \begin{bmatrix}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{bmatrix} + \begin{bmatrix}
5 & 5 & 5 \\
5 & 10 & -15 \\
10 & -5 & 15
\end{bmatrix} + \begin{bmatrix}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{bmatrix}$$

$$= \begin{bmatrix}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{bmatrix} - \begin{bmatrix}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{bmatrix}$$

$$= \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O$$

Thus,
$$A^3 - 6A^2 + 5A + 11I = O$$
.

Now,

$$A^3 - 6A^2 + 5A + 11I = 0$$

$$\Rightarrow (AAA)A^{-1} - 6(AA)A^{-1} + 5AA^{-1} + 11A^{-1} = 0$$
 Post-multiplying by A^{-1} as $|A| \neq 0$

$$\Rightarrow AA(AA^{-1}) - 6A(AA^{-1}) + 5(AA^{-1}) = -11(IA^{-1})$$

$$\Rightarrow A^2 - 6A + 5I = -11A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{11}(A^2 - 6A + 5I)$$
 ...(1)

Now,

$$A^2 - 6A + 5I$$

$$\begin{bmatrix}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{bmatrix} - 6 \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{bmatrix} + 5 \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$= \begin{bmatrix}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{bmatrix} - \begin{bmatrix}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{bmatrix} + \begin{bmatrix}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{bmatrix}$$

$$= \begin{bmatrix}
9 & 2 & 1 \\
-3 & 13 & -14 \\
7 & -3 & 19
\end{bmatrix} - \begin{bmatrix}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{bmatrix}$$

$$= \begin{bmatrix}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{bmatrix}$$

From equation (1), we have:

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}$$

Question 16:

If
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 verify that $A^3 - 6A^2 + 9A - 4I = O$ and hence find A^{-1}

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4+1+1 & -2-2-1 & 2+1+2 \\ -2-2-1 & 1+4+1 & -1-2-2 \\ 2+1+2 & -1-2-2 & 1+1+4 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$$

$$A^{3} = A^{2}A = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 12+5+5 & -6-10-5 & 6+5+10 \\ -10-6-5 & 5+12+5 & -5-6-10 \\ 10+5+6 & -5-10-6 & 5+5+12 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 2 & -21 & 22 & -21 \\ 2 & -21 & 22 & -21 \end{bmatrix}$$

$$A^3 - 6A^2 + 9A - 4I$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - 6 \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} + 9 \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - \begin{bmatrix} 36 & -30 & 30 \\ -30 & 36 & -30 \\ 30 & -30 & 36 \end{bmatrix} + \begin{bmatrix} 18 & -9 & 9 \\ -9 & 18 & -9 \\ 9 & -9 & 18 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 40 & -30 & 30 \\ -30 & 40 & -30 \\ 30 & -30 & 40 \end{bmatrix} - \begin{bmatrix} 40 & -30 & 30 \\ -30 & 40 & -30 \\ 30 & -30 & 40 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A^3 - 6A^2 + 9A - 4I = 0$$

Now.

$$A^3 - 6A^2 + 9A - 4I = 0$$

$$\Rightarrow$$
 $(AAA)A^{-1} - 6(AA)A^{-1} + 9AA^{-1} - 4IA^{-1} = 0$

Post-multiplying by A^{-1} as $|A| \neq 0$

$$\Rightarrow AA(AA^{-1}) - 6A(AA^{-1}) + 9(AA^{-1}) = 4(IA^{-1})$$

$$\Rightarrow AAI - 6AI + 9I = 4A^{-1}$$

$$\Rightarrow A^2 - 6A + 9I = 4A^{-1}$$

$$\Rightarrow A^{-1} = \frac{1}{4} (A^2 - 6A + 9I) \qquad ...(1)$$

$$A^2 - 6A + 9I$$

$$\begin{bmatrix}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{bmatrix} - 6 \begin{bmatrix}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{bmatrix} + 9 \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \\
= \begin{bmatrix}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{bmatrix} - \begin{bmatrix}
12 & -6 & 6 \\
-6 & 12 & -6 \\
6 & -6 & 12
\end{bmatrix} + \begin{bmatrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{bmatrix} \\
= \begin{bmatrix}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{bmatrix}$$

From equation (1), we have:

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

Ouestion 17:

Let A be a nonsingular square matrix of order 3×3 . Then |adjA| is equal to

A.
$$|A|$$
 B. $|A|^2$ **C.** $|A|^3$ **D.** $3|A|$

Answer B

We know that,

$$(adjA) A = |A| I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$

$$\Rightarrow |(adjA) A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$

$$\Rightarrow |adjA| |A| = |A|^{3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = |A|^{3} (I)$$

$$\therefore |adjA| = |A|^{2}$$

Hence, the correct answer is B.

Question 18:

If A is an invertible matrix of order 2, then det (A^{-1}) is equal to

A. det (*A*) **B.**
$$\frac{1}{\det(A)}$$
 C. 1 **D.** 0 Answer

Since A is an invertible matrix, A^{-1} exists and $A^{-1} = \frac{1}{|A|} adjA$.

As matrix A is of order 2, let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

Then,
$$|A| = ad - bc$$
 and $adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

$$A^{-1} = \frac{1}{|A|} adjA = \begin{bmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$$

$$|A^{-1}| = \begin{vmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix} = \frac{1}{|A|^2} (ad - bc) = \frac{1}{|A|^2} . |A| = \frac{1}{|A|}$$

$$\therefore \det\left(A^{-1}\right) = \frac{1}{\det\left(A\right)}$$

Hence, the correct answer is B.