Exercise 4.5

Question 1:

Find adjoint of each of the matrices.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
We have,
$A_{11}=4, A_{12}=-3, A_{21}=-2, A_{22}=1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right]=\left[\begin{array}{lr}4 & -2 \\ -3 & 1\end{array}\right]$

Question 2:

Find adjoint of each of the matrices.
$\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$.
We have,
$A_{11}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3$
$A_{12}=-\left|\begin{array}{ll}2 & 5 \\ -2 & 1\end{array}\right|=-(2+10)=-12$
$A_{13}=\left|\begin{array}{ll}2 & 3 \\ -2 & 0\end{array}\right|=0+6=6$
$A_{21}=-\left|\begin{array}{ll}-1 & 2 \\ 0 & 1\end{array}\right|=-(-1-0)=1$
$A_{22}=\left|\begin{array}{ll}1 & 2 \\ -2 & 1\end{array}\right|=1+4=5$
$A_{23}=-\left|\begin{array}{ll}1 & -1 \\ -2 & 0\end{array}\right|=-(0-2)=2$
$A_{31}=\left|\begin{array}{ll}-1 & 2 \\ 3 & 5\end{array}\right|=-5-6=-11$
$A_{32}=-\left|\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right|=-(5-4)=-1$
$A_{33}=\left|\begin{array}{ll}1 & -1 \\ 2 & 3\end{array}\right|=3+2=5$
Hence, adj $A=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]=\left[\begin{array}{lll}3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5\end{array}\right]$.

Question 3:

Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.
$\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$
Answer
$A=\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$
we have,
$|A|=-12-(-12)=-12+12=0$
$\therefore|A| I=0\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Now,
$A_{11}=-6, A_{12}=4, A_{21}=-3, A_{22}=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{rr}-6 & -3 \\ 4 & 2\end{array}\right]$
Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{rr}
2 & 3 \\
-4 & -6
\end{array}\right]\left[\begin{array}{rr}
-6 & -3 \\
4 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
-12+12 & -6+6 \\
24-24 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\text { Also, }(\operatorname{adj} A) A=\left[\begin{array}{rr}
-6 & -3 \\
4 & 2
\end{array}\right]\left[\begin{array}{rr}
2 & 3 \\
-4 & -6
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-12+12 & -18+18 \\
8-8 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 4:

Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.
$\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
Answer
$A=\left[\begin{array}{ccr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
$|A|=1(0-0)+1(9+2)+2(0-0)=11$
$\therefore|A| I=11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
Now,

$$
\begin{aligned}
& A_{11}=0, A_{12}=-(9+2)=-11, A_{13}=0 \\
& A_{21}=-(-3-0)=3, A_{22}=3-2=1, A_{23}=-(0+1)=-1 \\
& A_{31}=2-0=2, A_{32}=-(-2-6)=8, A_{33}=0+3=3
\end{aligned}
$$

$\therefore \operatorname{adj} A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]$
Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{lll}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{lll}
0+11+0 & 3-1-2 & 2-8+6 \\
0+0+0 & 9+0+2 & 6+0-6 \\
0+0+0 & 3+0-3 & 2+0+9
\end{array}\right] \\
& =\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
\end{aligned}
$$

Also,
$(\operatorname{adj} A) \cdot A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{lcr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$

$$
=\left[\begin{array}{lll}
0+9+2 & 0+0+0 & 0-6+6 \\
-11+3+8 & 11+0+0 & -22-2+24 \\
0-3+3 & 0+0+0 & 0+2+9
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 6:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$
Answer

Let $A=\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$.
we have,
$|A|=-2+15=13$
Now,
$A_{11}=2, A_{12}=3, A_{21}=-5, A_{22}=-1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{13}\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$

Question 7:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$.
We have,
$|A|=1(10-0)-2(0-0)+3(0-0)=10$
Now,
$A_{11}=10-0=10, A_{12}=-(0-0)=0, A_{13}=0-0=0$
$A_{21}=-(10-0)=-10, A_{22}=5-0=5, A_{23}=-(0-0)=0$
$A_{31}=8-6=2, A_{32}=-(4-0)=-4, A_{33}=2-0=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{10}\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$

Question 8:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$.
We have,
$|A|=1(-3-0)-0+0=-3$
Now,
$A_{11}=-3-0=-3, A_{12}=-(-3-0)=3, A_{13}=6-15=-9$
$A_{21}=-(0-0)=0, A_{22}=-1-0=-1, A_{23}=-(2-0)=-2$
$A_{31}=0-0=0, A_{32}=-(0-0)=0, A_{33}=3-0=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$

Question 9:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$.
We have,
$|A|=2(-1-0)-1(4-0)+3(8-7)$

$$
\begin{aligned}
& =2(-1)-1(4)+3(1) \\
& =-2-4+3 \\
& =-3
\end{aligned}
$$

Now,
$A_{11}=-1-0=-1, A_{12}=-(4-0)=-4, A_{13}=8-7=1$
$A_{21}=-(1-6)=5, A_{22}=2+21=23, A_{23}=-(4+7)=-11$
$A_{31}=0+3=3, A_{32}=-(0-12)=12, A_{33}=-2-4=-6$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{lll}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6\end{array}\right]$

Question 10:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
Answer

Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
By expanding along C_{1}, we have:
$|A|=1(8-6)-0+3(3-4)=2-3=-1$
Now,
$A_{11}=8-6=2, A_{12}=-(0+9)=-9, A_{13}=0-6=-6$
$A_{21}=-(-4+4)=0, A_{22}=4-6=-2, A_{23}=-(-2+3)=-1$
$A_{31}=3-4=-1, A_{32}=-(-3-0)=3, A_{33}=2-0=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]=\left[\begin{array}{lll}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$

Question 11:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
Answer

Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$.
We have,
$|A|=1\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)=-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=-1$
Now,
$A_{11}=-\cos ^{2} \alpha-\sin ^{2} \alpha=-1, A_{12}=0, A_{13}=0$
$A_{21}=0, A_{22}=-\cos \alpha, A_{23}=-\sin \alpha$
$A_{31}=0, A_{32}=-\sin \alpha, A_{33}=\cos \alpha$
\therefore adj $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=-\left[\begin{array}{lll}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$

Question 12:

Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$. Verify that $(A B)^{-1}=B^{-1} A^{-1}$
Answer
Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$.
We have,
$|A|=15-14=1$
Now,
$A_{11}=5, A_{12}=-2, A_{21}=-7, A_{22}=3$
\therefore adj $A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$

Now, let $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$.
We have,
$|B|=54-56=-2$
$\therefore \operatorname{adj} B=\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]$
$\therefore B^{-1}=\frac{1}{|B|} \operatorname{adj} B=-\frac{1}{2}\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]=\left[\begin{array}{cc}-\frac{9}{2} & 4 \\ \frac{7}{2} & -3\end{array}\right]$
Now,

$$
\begin{align*}
B^{-1} A^{-1} & =\left[\begin{array}{cc}
-\frac{9}{2} & 4 \\
\frac{7}{2} & -3
\end{array}\right]\left[\begin{array}{rr}
5 & -7 \\
-2 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
-\frac{45}{2}-8 & \frac{63}{2}+12 \\
\frac{35}{2}+6 & -\frac{49}{2}-9
\end{array}\right]=\left[\begin{array}{ll}
-\frac{61}{2} & \frac{87}{2} \\
\frac{47}{2} & -\frac{67}{2}
\end{array}\right] \tag{1}
\end{align*}
$$

Then,

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right]\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right] \\
& =\left[\begin{array}{ll}
18+49 & 24+63 \\
12+35 & 16+45
\end{array}\right] \\
& =\left[\begin{array}{ll}
67 & 87 \\
47 & 61
\end{array}\right]
\end{aligned}
$$

Therefore, we have $|A B|=67 \times 61-87 \times 47=4087-4089=-2$.
Also,
$\operatorname{adj}(A B)=\left[\begin{array}{rr}61 & -87 \\ -47 & 67\end{array}\right]$
$\therefore(A B)^{-1}=\frac{1}{|A B|} \operatorname{adj}(A B)=-\frac{1}{2}\left[\begin{array}{ll}61 & -87 \\ -47 & 67\end{array}\right]$

$$
=\left[\begin{array}{cc}
-\frac{61}{2} & \frac{87}{2} \tag{2}\\
\frac{47}{2} & -\frac{67}{2}
\end{array}\right]
$$

From (1) and (2), we have:
$(A B)^{-1}=B^{-1} A^{-1}$
Hence, the given result is proved.

Question 13:

If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=O$. Hence find A^{-1}.
Answer

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& A^{2}=A \cdot A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right]=\left[\begin{array}{ll}
8 & 5 \\
-5 & 3
\end{array}\right] \\
& \therefore A^{2}-5 A+7 I \\
& =\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]-5\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{cc}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{ll}
-7 & 0 \\
0 & -7
\end{array}\right]+\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \text { Hence, } A^{2}-5 A+7 I=O . \\
& \therefore A \cdot A-5 A=-7 I \\
& \Rightarrow A \cdot A\left(A^{-1}\right)-5 A A^{-1}=-7 I A^{-1} \\
& \Rightarrow A\left(A A^{-1}\right)-5 I=-7 A^{-1} \\
& \Rightarrow A I-5 I=-7 A^{-1} \\
& \Rightarrow A^{-1}=-\frac{1}{7}(A-5 I) \\
& \Rightarrow A^{-1}=\frac{1}{7}(5 I-A) \\
& =\frac{1}{7}\left(\left[\begin{array}{rr}
5 & 0 \\
0 & 5
\end{array}\right]-\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\right)=\frac{1}{7}\left[\begin{array}{ll}
2 & -1 \\
1 & 3
\end{array}\right] \\
& \therefore A^{-1}=\frac{1}{7}\left[\begin{array}{ll}
2 & -1 \\
1 & 3
\end{array}\right]
\end{aligned}
$$

Question 14:

For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that $A^{2}+a A+b I=0$. Answer
$A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}9+2 & 6+2 \\ 3+1 & 2+1\end{array}\right]=\left[\begin{array}{ll}11 & 8 \\ 4 & 3\end{array}\right]$
Now,

$$
\left.\begin{array}{l}
A^{2}+a A+b I=O \\
\Rightarrow(A A) A^{-1}+a A A^{-1}+b I A^{-1}=O \\
\Rightarrow A\left(A A^{-1}\right)+a I+b\left(I A^{-1}\right)=O \\
\Rightarrow A I+a I+b A^{-1}=O \\
\Rightarrow A+a I=-b A^{-1} \\
\Rightarrow A^{-1}=-\frac{1}{b}(A+a I)
\end{array} \quad \text { [Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right]
$$

Now,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{1}\left[\begin{array}{rr}1 & -2 \\ -1 & 3\end{array}\right]=\left[\begin{array}{rr}1 & -2 \\ -1 & 3\end{array}\right]$
We have:

$$
\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]=-\frac{1}{b}\left(\left[\begin{array}{cc}
3 & 2 \\
1 & 1
\end{array}\right]+\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right]\right)=-\frac{1}{b}\left[\begin{array}{ll}
3+a & 2 \\
1 & 1+a
\end{array}\right]=\left[\begin{array}{ll}
\frac{-3-a}{b} & -\frac{2}{b} \\
-\frac{1}{b} & \frac{-1-a}{b}
\end{array}\right]
$$

Comparing the corresponding elements of the two matrices, we have:

$$
\begin{aligned}
& -\frac{1}{b}=-1 \Rightarrow b=1 \\
& \frac{-3-a}{b}=1 \Rightarrow-3-a=1 \Rightarrow a=-4
\end{aligned}
$$

Hence, -4 and 1 are the required values of a and b respectively.

Question 15:

For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ A^{-1} & -1 & 3\end{array}\right]$ show that $A^{3}-6 A^{2}+5 A+11 I=O$. Hence, find
Answer

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
A^{2} & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+1+2 & 1+2-1 & 1-3+3 \\
1+2-6 & 1+4+3 & 1-6-9 \\
2-1+6 & 2-2-3 & 2+3+9
\end{array}\right]=\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]
\end{aligned}
$$

$$
A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
4+2+2 & 4+4-1 & 4-6+3 \\
-3+8-28 & -3+16+14 & -3-24-42 \\
7-3+28 & 7-6-14 & 7+9+42
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]
$$

$\therefore A^{3}-6 A^{2}+5 A+11 I$
$=\left[\begin{array}{ccc}8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58\end{array}\right]-6\left[\begin{array}{ccc}4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14\end{array}\right]+5\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]+11\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58\end{array}\right]-\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]+\left[\begin{array}{ccc}5 & 5 & 5 \\ 5 & 10 & -15 \\ 10 & -5 & 15\end{array}\right]+\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
$=\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]-\left[\begin{array}{ccc}24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=O$
Thus, $A^{3}-6 A^{2}+5 A+11 I=O$.
Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+5 A+11 I=O \\
& \left.\Rightarrow(A A A) A^{-1}-6(A A) A^{-1}+5 A A^{-1}+11 L A^{-1}=0 \quad \quad \quad \text { Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right] \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+5\left(A A^{-1}\right)=-11\left(I A^{-1}\right) \\
& \Rightarrow A^{2}-6 A+5 I=-11 A^{-1} \\
& \Rightarrow A^{-1}=-\frac{1}{11}\left(A^{2}-6 A+5 I\right) \quad \tag{1}
\end{align*}
$$

Now,
$A^{2}-6 A+5 I$
$=\left[\begin{array}{ccc}4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14\end{array}\right]-6\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]+5\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14\end{array}\right]-\left[\begin{array}{ccc}6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18\end{array}\right]+\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$
$=\left[\begin{array}{ccc}9 & 2 & 1 \\ -3 & 13 & -14 \\ 7 & -3 & 19\end{array}\right]-\left[\begin{array}{ccc}6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18\end{array}\right]$
$=\left[\begin{array}{lll}3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1\end{array}\right]$
From equation (1), we have:
$A^{-1}=-\frac{1}{11}\left[\begin{array}{lll}3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1\end{array}\right]=\frac{1}{11}\left[\begin{array}{lll}-3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1\end{array}\right]$

Question 16:

If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ verify that $A^{3}-6 A^{2}+9 A-4 I=O$ and hence find A^{-1}
Answer

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{lcl}
4+1+1 & -2-2-1 & 2+1+2 \\
-2-2-1 & 1+4+1 & -1-2-2 \\
2+1+2 & -1-2-2 & 1+1+4
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
& A^{3}=A^{2} A=\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
12+5+5 & -6-10-5 & 6+5+10 \\
-10-6-5 & 5+12+5 & -5-6-10 \\
10+5+6 & -5-10-6 & 5+5+12
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
& A^{3}-6 A^{2}+9 A-4 I \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{lcl}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-\left[\begin{array}{ccc}
36 & -30 & 30 \\
-30 & 36 & -30 \\
30 & -30 & 36
\end{array}\right]+\left[\begin{array}{ccc}
18 & -9 & 9 \\
-9 & 18 & -9 \\
9 & -9 & 18
\end{array}\right]-\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]-\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \therefore A^{3}-6 A^{2}+9 A-4 I=O
\end{aligned}
$$

Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+9 A-4 I=O \\
& \left.\Rightarrow(A A A) A^{-1}-6(A A) A^{-1}+9 A A^{-1}-4 I A^{-1}=O \quad \text { [Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right] \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+9\left(A A^{-1}\right)=4\left(I A^{-1}\right) \\
& \Rightarrow A A I-6 A I+9 I=4 A^{-1} \\
& \Rightarrow A^{2}-6 A+9 I=4 A^{-1} \\
& \Rightarrow A^{-1}=\frac{1}{4}\left(A^{2}-6 A+9 I\right) \tag{1}\\
& A^{2}-6 A+9 I \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-\left[\begin{array}{ccc}
12 & -6 & 6 \\
-6 & 12 & -6 \\
6 & -6 & 12
\end{array}\right]+\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
\end{align*}
$$

From equation (1), we have:
$A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$

Question 17:

Let A be a nonsingular square matrix of order 3×3. Then $|\operatorname{adj} A|$ is equal to
A. $|A|$
B. $|A|^{2}$
C. $|A|^{3}$
D. $3|A|$

Answer B
We know that,
$(\operatorname{adj} A) A=|A| I=\left[\begin{array}{lll}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right]$
$\Rightarrow|(\operatorname{adj} A) A|=\left|\begin{array}{lll}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right|$
$\Rightarrow|\operatorname{adj} A||A|=|A|^{3}\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=|A|^{3}(I)$
$\therefore|\operatorname{adj} A|=|A|^{2}$
Hence, the correct answer is B.

Question 18:

If A is an invertible matrix of order 2 , then $\operatorname{det}\left(A^{-1}\right)$ is equal to
A. $\operatorname{det}(A)$ B. $\frac{1}{\operatorname{det}(A)}$ C. 1 D. 0

Answer

Since A is an invertible matrix, A^{-1} exists and $A^{-1}=\frac{1}{|A|}$ adj A.

As matrix A is of order 2, let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
Then, $|A|=a d-b c$ and $a d j A=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
Now,

$$
\begin{aligned}
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\left[\begin{array}{cc}
\frac{d}{|A|} & \frac{-b}{|A|} \\
\frac{-c}{|A|} & \frac{a}{|A|}
\end{array}\right] \\
& \therefore\left|A^{-1}\right|=\left\lvert\, \begin{array}{cc}
\frac{d}{|A|} & \left.\frac{-b}{|A|} \right\rvert\, \\
\frac{-c}{|A|} & \left.\frac{a}{|A|} \right\rvert\, \\
\hline \operatorname{det}\left(A^{-1}\right)=\frac{1}{|A|^{2}} \left\lvert\, \begin{array}{cc}
d & -b \\
\operatorname{det}(A) & a \mid
\end{array}\right. \\
\therefore \frac{1}{|A|^{2}}(a d-b c)=\frac{1}{|A|^{2}} \cdot|A|=\frac{1}{|A|}
\end{array}\right. \\
&
\end{aligned}
$$

Hence, the correct answer is B.

