Chapter 2 - Inverse Trigonometric Functions

Exercise 2.1

Question 1:

Find the principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)$

Answer

Let $\sin ^{-1}\left(-\frac{1}{2}\right)=y$. Then $\sin y=-\frac{1}{2}=-\sin \left(\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\sin ^{-1}$ is
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$.
Therefore, the principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.

Question 2:

Find the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
Answer
Let $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=y$. Then, $\cos y=\frac{\sqrt{3}}{2}=\cos \left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is
$[0, \pi]$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.

Therefore, the principal value of

$$
\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \text { is } \frac{\pi}{6}
$$

Question 3:

Find the principal value of $\operatorname{cosec}^{-1}(2)$

Answer

Let $\operatorname{cosec}^{-1}(2)=y$. Then, $\quad \operatorname{cosec} y=2=\operatorname{cosec}\left(\frac{\approx}{6}\right)$.
We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$.

Therefore, the principal value of $\operatorname{cosec}^{-1}(2)$ is $\frac{\pi}{6}$.

Question 4:

Find the principal value of $\tan ^{-1}(-\sqrt{3})$
Let $\tan ^{-1}(-\sqrt{3})=y$. Then, $\tan y=-\sqrt{3}=-\tan \frac{\pi}{3}=\tan \left(-\frac{\pi}{3}\right)$.
Answer
We know that the range of the principal value branch of $\tan ^{-1}$ is
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan \left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$.
Therefore, the principal value of $\tan ^{-1}(\sqrt{3})$ is $-\frac{\pi}{3}$.

Question 5:

Find the principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$
Let $\cos ^{-1}\left(-\frac{1}{2}\right)=y$. Then, $\cos y=-\frac{1}{2}=-\cos \left(\frac{\pi}{3}\right)=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right)$.

Answer

We know that the range of the principal value branch of $\cos ^{-1}$ is
$[0, \pi]$ and $\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$.

Therefore, the principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2 \pi}{3}$.

Question 6:

Find the principal value of $\tan ^{-1}(-1)$ Answer
Let $\tan ^{-1}(-1)=y$. Then, $\tan y=-1=-\tan \left(\frac{\pi}{4}\right)=\tan \left(-\frac{\pi}{4}\right)$.
We know that the range of the principal value branch of $\tan ^{-1}$ is

$$
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text { and } \tan \left(-\frac{\pi}{4}\right)=-1
$$

Therefore, the principal value of

$$
\tan ^{-1}(-1) \text { is }-\frac{\pi}{4}
$$

Question 7:

Find the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
Answer
Let $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=y$. Then, $\sec y=\frac{2}{\sqrt{3}}=\sec \left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of sec^{-1} is

$$
[0, \pi]-\left\{\frac{\pi}{2}\right\} \text { and } \sec \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}} .
$$

Therefore, the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

Question 8:

Find the principal value of $\cot ^{-1}(\sqrt{3})$
Answer
Let $\cot ^{-1}(\sqrt{3})=y$. Then, $\cot y=\sqrt{3}=\cot \left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\cot ^{-1}$ is $(0, \pi)$ and
$\cot \left(\frac{\pi}{6}\right)=\sqrt{3}$.
Therefore, the principal value of $\cot ^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.

Question 9:

Find the principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
Answer
Let $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=y$. Then, $\cos y=-\frac{1}{\sqrt{2}}=-\cos \left(\frac{\pi}{4}\right)=\cos \left(\pi-\frac{\pi}{4}\right)=\cos \left(\frac{3 \pi}{4}\right)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$.

Therefore, the principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3 \pi}{4}$.

Question 10:

Find the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$
Answer
Let $\operatorname{cosec}^{-1}(-\sqrt{2})=y$. Then, $\operatorname{cosec} y=-\sqrt{2}=-\operatorname{cosec}\left(\frac{\pi}{4}\right)=\operatorname{cosec}\left(-\frac{\pi}{4}\right)$.
We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$ and $\operatorname{cosec}\left(-\frac{\pi}{4}\right)=-\sqrt{2}$.

Therefore, the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.
Question 11:
Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$
Answer

Let $\tan ^{-1}(1)=x$. Then, $\tan x=1=\tan \frac{\pi}{4}$.
$\therefore \tan ^{-1}(1)=\frac{\pi}{4}$
Let $\cos ^{-1}\left(-\frac{1}{2}\right)=y$. Then, $\cos y=-\frac{1}{2}=-\cos \left(\frac{\pi}{3}\right)=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right)$.
$\therefore \cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$
Let $\sin ^{-1}\left(-\frac{1}{2}\right)=z$. Then, $\sin z=-\frac{1}{2}=-\sin \left(\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right)$.
$\therefore \sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}$
$\therefore \tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$
$=\frac{\pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{6}$
$=\frac{3 \pi+8 \pi-2 \pi}{12}=\frac{9 \pi}{12}=\frac{3 \pi}{4}$

Question 12:

Find the value of $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$
Answer
Let $\cos ^{-1}\left(\frac{1}{2}\right)=x$. Then, $\cos x=\frac{1}{2}=\cos \left(\frac{\pi}{3}\right)$.
$\therefore \cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
Let $\sin ^{-1}\left(\frac{1}{2}\right)=y$. Then, $\sin y=\frac{1}{2}=\sin \left(\frac{\pi}{6}\right)$.
$\therefore \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
$\therefore \cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}+\frac{2 \pi}{6}=\frac{\pi}{3}+\frac{\pi}{3}=\frac{2 \pi}{3}$

Question 13:

Find the value of if $\sin ^{-1} x=y$, then

$$
0 \leq y \leq \pi \quad \text { (B) } \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

(A)
(C)

$$
0<y<\pi \quad-\frac{\pi}{2}<y<\frac{\pi}{2}
$$

(D)

Answer

It is given that $\sin ^{-1} x=y$.
We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Question 14:

Find the

$$
\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2) \text { value of is equal to }
$$

$$
-\frac{\pi}{3} \quad \frac{\pi}{3} \quad \frac{2 \pi}{3}
$$

Answer

Let $\tan ^{-1} \sqrt{3}=x$. Then, $\tan x=\sqrt{3}=\tan \frac{\pi}{3}$.
We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
$\therefore \tan ^{-1} \sqrt{3}=\frac{\pi}{3}$
Let $\sec ^{-1}(-2)=y$. Then, $\sec y=-2=-\sec \left(\frac{\pi}{3}\right)=\sec \left(\pi-\frac{\pi}{3}\right)=\sec \frac{2 \pi}{3}$.
We know that the range of the principal value branch of $\sec ^{-1}$ is $[0, \pi]-\left\{\frac{\pi}{2}\right\}$.
$\therefore \sec ^{-1}(-2)=\frac{2 \pi}{3}$

Hence, $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)=\frac{\pi}{3}-\frac{2 \pi}{3}=-\frac{\pi}{3}$

