Memorysclub.com

Chapter 2 - Inverse Trigonometric Functions

Exercise 2.1

Question 1:

Find the principal value of $\sin^{-1}\!\left(-\frac{1}{2}\right)$

Answer

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = y$$
. Then $\sin y = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of sin⁻¹ is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]_{\text{and sin}} \left(-\frac{\pi}{6}\right) = -\frac{1}{2}.$$

 $\label{eq:sin-1} sin^{-1} \Biggl(-\frac{1}{2} \Biggr) is \, -\frac{\pi}{6}.$ Therefore, the principal value of

Question 2:

 $\cos^{-1}\!\left(\frac{\sqrt{3}}{2}\right)$ Find the principal value of

Answer

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
. Then, $\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cos^{-1} is

$$\left[0,\pi\right]$$
 and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 is $\frac{\pi}{6}$

Therefore, the principal value of

Question 3:

Find the principal value of cosec⁻¹ (2)

Answer

$$\operatorname{cosec} y = 2 = \operatorname{cosec} \left(\frac{\alpha}{6} \right).$$
 Let $\operatorname{cosec}^{-1}(2) = y$. Then,

We know that the range of the principal value branch of \csc^{-1} is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$.

Therefore, the principal value of $\operatorname{cosec}^{-1}(2)$ is $\frac{\pi}{6}$.

Question 4:

Find the principal value of $\tan^{-1}\left(-\sqrt{3}\right)$

Let
$$\tan^{-1}(-\sqrt{3}) = y$$
. Then, $\tan y = -\sqrt{3} = -\tan\frac{\pi}{3} = \tan\left(-\frac{\pi}{3}\right)$.

Answer

We know that the range of the principal value branch of tan⁻¹ is

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$.

Therefore, the principal value of $\tan^{-1}\left(\sqrt{3}\right)$ is $-\frac{\pi}{3}$.

Question 5:

Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

Answer

We know that the range of the principal value branch of \cos^{-1} is

$$[0,\pi]$$
 and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$.

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

Question 6:

Find the principal value of tan^{-1} (-1) Answer

$$\tan y = -1 = -\tan\left(\frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right).$$
 Let $\tan^{-1}(-1) = y$. Then,

We know that the range of the principal value branch of tan⁻¹ is

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{4}\right) = -1$.

Therefore, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.

Question 7:

Find the principal value of $\frac{\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)}{\text{Answer}}$

Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$$
. Then, $\sec y = \frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of sec^{-1} is

$$\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$$
 and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$.

 $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$. Therefore, the principal value of

Question 8:

Find the principal value of $\cot^{-1}(\sqrt{3})$

Answer

Let
$$\cot^{-1}\left(\sqrt{3}\right) = y$$
. Then, $\cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of \cot^{-1} is $(0,\pi)$ and

$$\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$$
.

Therefore, the principal value of $\cot^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.

Question 9:

 $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ Find the principal value of

Answer

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
. Then, $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$.

We know that the range of the principal value branch of \cos^{-1} is $[0,\pi]$ and

$$\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

 $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$. Therefore, the principal value of

Question 10:

Find the principal value of $\csc^{-1}\left(-\sqrt{2}\right)$

Answer

Let
$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right) = y$$
. Then, $\operatorname{cosec} y = -\sqrt{2} = -\operatorname{cosec}\left(\frac{\pi}{4}\right) = \operatorname{cosec}\left(-\frac{\pi}{4}\right)$.

We know that the range of the principal value branch of cosec⁻¹ is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 and $\operatorname{cosec}\left(-\frac{\pi}{4}\right) = -\sqrt{2}$.

 $\csc^{-1}\left(-\sqrt{2}\right)$ is $-\frac{\pi}{4}$. Therefore, the principal value of Question 11:

 $\tan^{-1}(1) + \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})$

Find the value of

Answer

Let $\tan^{-1}(1) = x$. Then, $\tan x = 1 = \tan \frac{\pi}{4}$.

$$\therefore \tan^{-1}\left(1\right) = \frac{\pi}{4}$$

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

$$\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = z$$
. Then, $\sin z = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\therefore \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

$$=\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}$$

$$=\frac{3\pi+8\pi-2\pi}{12}=\frac{9\pi}{12}=\frac{3\pi}{4}$$

Question 12:

$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$$
 Find the value of

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$.

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

Let
$$\sin^{-1}\left(\frac{1}{2}\right) = y$$
. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$.

$$\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

Question 13:

Find the value of if $\sin^{-1} x = y$, then

$$0 \le y \le \pi$$
 (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

(C)
$$0 < y < \pi$$
 $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Answer

It is given that $\sin^{-1} x = y$.

We know that the range of the principal value branch of \sin^{-1} is

Therefore,
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
.

Question 14:

 $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$ value of is equal to Find the

Answer

Class XII Chapter 2 – Inverse Trigonometric Functions
Let $\tan^{-1}\sqrt{3} = x$. Then, $\tan x = \sqrt{3} = \tan\frac{\pi}{3}$.

We know that the range of the principal value branch of \tan^{-1} is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

Let
$$\sec^{-1}(-2) = y$$
. Then, $\sec y = -2 = -\sec\left(\frac{\pi}{3}\right) = \sec\left(\pi - \frac{\pi}{3}\right) = \sec\frac{2\pi}{3}$.

We know that the range of the principal value branch of \sec^{-1} is $\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$.

$$\therefore \sec^{-1}\left(-2\right) = \frac{2\pi}{3}$$

Hence,
$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$