Question 1:

Show that the function given by $f(x)=3 x+17$ is strictly increasing on \mathbf{R}.
Answer
Let x_{1} and x_{2} be any two numbers in \mathbf{R}.
Then, we have:
$x_{1}<x_{2} \Rightarrow 3 x_{1}<3 x_{2} \Rightarrow 3 x_{1}+17<3 x_{2}+17 \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
Hence, f is strictly increasing on \mathbf{R}.

Alternate method:

$f^{\prime}(x)=3>0$, in every interval of \mathbf{R}.
Thus, the function is strictly increasing on \mathbf{R}.

Question 2:

Show that the function given by $f(x)=e^{2 x}$ is strictly increasing on \mathbf{R}.
Answer
Let x_{1} and x_{2} be any two numbers in \mathbf{R}.
Then, we have:
$x_{1}<x_{2} \Rightarrow 2 x_{1}<2 x_{2} \Rightarrow e^{2 x_{1}}<e^{2 x_{2}} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
Hence, f is strictly increasing on \mathbf{R}.

Question 3:

Show that the function given by $f(x)=\sin x$ is
(a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$ (b) strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
(c) neither increasing nor decreasing in ($0, \pi$)

Answer
The given function is $f(x)=\sin x$.
$\therefore f^{\prime}(x)=\cos x$
(a) Since for each $x \in\left(0, \frac{\pi}{2}\right), \cos x>0$, we have $f^{\prime}(x)>0$.

Hence, f is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.
(b) Since for each $x \in\left(\frac{\pi}{2}, \pi\right), \cos x<0$, we have $f^{\prime}(x)<0$.

Hence, f is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.
(c) From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in ($0, \pi$).

Question 4:

Find the intervals in which the function f given by $f(x)=2 x^{2}-3 x$ is
(a) strictly increasing (b) strictly decreasing

Answer
The given function is $f(x)=2 x^{2}-3 x$.
$f^{\prime}(x)=4 x-3$
$\therefore f^{\prime}(x)=0 \Rightarrow x=\frac{3}{4}$
Now, the point $\frac{3}{4}$ divides the real line into two disjoint intervals i.e., $\left(-\infty, \frac{3}{4}\right)$ and $\left(\frac{3}{4}, \infty\right)$.

In interval $\left(-\infty, \frac{3}{4}\right), f^{\prime}(x)=4 x-3<0$.
Hence, the given function (f) is strictly decreasing in interval $\left(-\infty, \frac{3}{4}\right)$.
In interval $\left(\frac{3}{4}, \infty\right), f^{\prime}(x)=4 x-3>0$.

Hence, the given function (f) is strictly increasing in interval $\left(\frac{3}{4}, \infty\right)$.

Question 5:

Find the intervals in which the function f given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is
(a) strictly increasing (b) strictly decreasing

Answer
The given function is $f(x)=2 x^{3}-3 x^{2}-36 x+7$.
$f^{\prime}(x)=6 x^{2}-6 x-36=6\left(x^{2}-x-6\right)=6(x+2)(x-3)$

$$
\therefore f^{\prime}(x)=0 \Rightarrow x=-2,3
$$

The points $x=-2$ and $x=3$ divide the real line into three disjoint intervals i.e., $(-\infty,-2),(-2,3)$, and $(3, \infty)$.

In intervals $(-\infty,-2)$ and $(3, \infty), f^{\prime}(x)$ is positive while in interval
$(-2,3), f^{\prime}(x)$ is negative.
Hence, the given function (f) is strictly increasing in intervals
$(-\infty,-2)$ and $(3, \infty)$, while function (f) is strictly decreasing in interval
$(-2,3)$.

Question 6:

Find the intervals in which the following functions are strictly increasing or decreasing:
(a) $x^{2}+2 x-5$ (b) $10-6 x-2 x^{2}$
(c) $-2 x^{3}-9 x^{2}-12 x+1$ (d) $6-9 x-x^{2}$
(e) $(x+1)^{3}(x-3)^{3}$

Answer
(a) We have,
$f(x)=x^{2}+2 x-5$
$\therefore f^{\prime}(x)=2 x+2$
Now,
$f^{\prime}(x)=0 \Rightarrow x=-1$
Point $x=-1$ divides the real line into two disjoint intervals i.e., $(-\infty,-1)$ and $(-1, \infty)$.
In interval $(-\infty,-1), f^{\prime}(x)=2 x+2<0$.
$\therefore f$ is strictly decreasing in interval $(-\infty,-1)$.

Thus, f is strictly decreasing for $x<-1$.
In interval $(-1, \infty), f^{\prime}(x)=2 x+2>0$.
$\therefore f$ is strictly increasing in interval $(-1, \infty)$.

Thus, f is strictly increasing for $x>-1$.
(b) We have,
$f(x)=10-6 x-2 x^{2}$
$\therefore f^{\prime}(x)=-6-4 x$
Now,
$f^{\prime}(x)=0 \Rightarrow x=-\frac{3}{2}$

The point $x=-\frac{3}{2}$ divides the real line into two disjoint intervals
i.e., $\left(-\infty,-\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, \infty\right)$.

In interval $\left(-\infty,-\frac{3}{2}\right)$ i.e., when $x<-\frac{3}{2}, f^{\prime}(x)=-6-4 x<0$.
$\therefore f$ is strictly increasing for $x<-\frac{3}{2}$.

In interval $\left(-\frac{3}{2}, \infty\right)$ i.e., when $x>-\frac{3}{2}, f^{\prime}(x)=-6-4 x<0$.
$\therefore f$ is strictly decreasing for $x>-\frac{3}{2}$.
(c) We have,
$f(x)=-2 x^{3}-9 x^{2}-12 x+1$
$\therefore f^{\prime}(x)=-6 x^{2}-18 x-12=-6\left(x^{2}+3 x+2\right)=-6(x+1)(x+2)$
Now,
$f^{\prime}(x)=0 \Rightarrow x=-1$ and $x=-2$
Points $x=-1$ and $x=-2$ divide the real line into three disjoint intervals
i.e., $(-\infty,-2),(-2,-1)$, and $(-1, \infty)$.

In intervals $(-\infty,-2)$ and $(-1, \infty)$ i.e., when $x<-2$ and $x>-1$,
$f^{\prime}(x)=-6(x+1)(x+2)<0$.
$\therefore f$ is strictly decreasing for $x<-2$ and $x>-1$.

Now, in interval $(-2,-1)$ i.e., when $-2<x<-1, f^{\prime}(x)=-6(x+1)(x+2)>0$.
$\therefore f$ is strictly increasing for $-2<x<-1$.
(d) We have,
$f(x)=6-9 x-x^{2}$
$\therefore f^{\prime}(x)=-9-2 x$
Now, f^{\prime}
$(x)=0$ gives $x=-\frac{9}{2}$
The point $x=-\frac{9}{2}$ divides the real line into two disjoint intervals i.e.,
$\left(-\infty,-\frac{9}{2}\right)$ and $\left(-\frac{9}{2}, \infty\right)$.
In interval $\left(-\infty,-\frac{9}{2}\right)$ i.e., for $x<-\frac{9}{2}, f^{\prime}(x)=-9-2 x>0$.
$\therefore f$ is strictly increasing for $x<-\frac{9}{2}$.

In interval $\left(-\frac{9}{2}, \infty\right)$ i.e., for $x>-\frac{9}{2}, f^{\prime}(x)=-9-2 x<0$.
$\therefore f$ is strictly decreasing for $x>-\frac{9}{2}$.
(e) We have,

$$
\begin{aligned}
f(x) & =(x+1)^{3}(x-3)^{3} \\
f^{\prime}(x) & =3(x+1)^{2}(x-3)^{3}+3(x-3)^{2}(x+1)^{3} \\
& =3(x+1)^{2}(x-3)^{2}[x-3+x+1] \\
& =3(x+1)^{2}(x-3)^{2}(2 x-2) \\
& =6(x+1)^{2}(x-3)^{2}(x-1)
\end{aligned}
$$

Now,
$f^{\prime}(x)=0 \Rightarrow x=-1,3,1$
The points $x=-1, x=1$, and $x=3$ divide the real line into four disjoint intervals
i.e., $(-\infty,-1),(-1,1),(1,3)$, and $(3, \infty)$.

In intervals $(-\infty,-1)$ and $(-1,1), f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1)<0$.
$\therefore f$ is strictly decreasing in intervals $(-\infty,-1)$ and $(-1,1)$.

In intervals $(1,3)$ and $(3, \infty), f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1)>0$.
$\therefore f$ is strictly increasing in intervals $(1,3)$ and $(3, \infty)$.

Question 7:

Show that $y=\log (1+x)-\frac{2 x}{2+x}, x>-1$, is an increasing function of x throughout its domain.

Answer
We have,
$y=\log (1+x)-\frac{2 x}{2+x}$
$\therefore \frac{d y}{d x}=\frac{1}{1+x}-\frac{(2+x)(2)-2 x(1)}{(2+x)^{2}}=\frac{1}{1+x}-\frac{4}{(2+x)^{2}}=\frac{x^{2}}{(2+x)^{2}}$
Now, $\frac{d y}{d x}=0$
$\Rightarrow \frac{x^{2}}{(2+x)^{2}}=0$
$\Rightarrow x^{2}=0 \quad[(2+x) \neq 0$ as $x>-1]$
$\Rightarrow x=0$
Since $x>-1$, point $x=0$ divides the domain $(-1, \infty)$ in two disjoint intervals i.e., $-1<$ $x<0$ and $x>0$.

When $-1<x<0$, we have:
$x<0 \Rightarrow x^{2}>0$
$x>-1 \Rightarrow(2+x)>0 \Rightarrow(2+x)^{2}>0$
$\therefore y^{\prime}=\frac{x^{2}}{(2+x)^{2}}>0$
Also, when $x>0$:
$x>0 \Rightarrow x^{2}>0,(2+x)^{2}>0$
$\therefore y^{\prime}=\frac{x^{2}}{(2+x)^{2}}>0$
Hence, function f is increasing throughout this domain.

Question 8:

Find the values of x for which $y=[x(x-2)]^{2}$ is an increasing function.
Answer
We have,
$y=[x(x-2)]^{2}=\left[x^{2}-2 x\right]^{2}$
$\therefore \frac{d y}{d x}=y^{\prime}=2\left(x^{2}-2 x\right)(2 x-2)=4 x(x-2)(x-1)$
$\therefore \frac{d y}{d x}=0 \Rightarrow x=0, x=2, x=1$.
The points $x=0, x=1$, and $x=2$ divide the real line into four disjoint intervals i.e., $(-\infty, 0),(0,1)(1,2)$, and $(2, \infty)$.

In intervals $(-\infty, 0)$ and $(1,2), \frac{d y}{d x}<0$.
$\therefore y$ is strictly decreasing in intervals $(-\infty, 0)$ and $(1,2)$.

However, in intervals $(0,1)$ and $(2, \infty), \frac{d y}{d x}>0$.
$\therefore y$ is strictly increasing in intervals $(0,1)$ and $(2, \infty)$.
$\therefore y$ is strictly increasing for $0<x<1$ and $x>2$.

Question 9:

Prove that $y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
Answer
We have,

$$
\begin{aligned}
& \begin{array}{l}
y= \\
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{(2+\operatorname{sos} \theta}{(2+\cos \theta)}-\theta \\
&=\frac{8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta}{(2+\cos \theta)^{2}}-1 \\
&(2+\cos \theta)^{2}
\end{aligned} \\
\\
\quad=\frac{8 \cos \theta+4}{(2+\cos \theta)^{2}}-1
\end{array}
\end{aligned}
$$

Now, $\frac{d y}{d x}=0$.
$\Rightarrow \frac{8 \cos \theta+4}{(2+\cos \theta)^{2}}=1$
$\Rightarrow 8 \cos \theta+4=4+\cos ^{2} \theta+4 \cos \theta$
$\Rightarrow \cos ^{2} \theta-4 \cos \theta=0$
$\Rightarrow \cos \theta(\cos \theta-4)=0$
$\Rightarrow \cos \theta=0$ or $\cos \theta=4$
Since $\cos \theta \neq 4, \cos \theta=0$.
$\cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}$
Now,
$\frac{d y}{d x}=\frac{8 \cos \theta+4-\left(4+\cos ^{2} \theta+4 \cos \theta\right)}{(2+\cos \theta)^{2}}=\frac{4 \cos \theta-\cos ^{2} \theta}{(2+\cos \theta)^{2}}=\frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}}$

In interval $\left(0, \frac{\pi}{2}\right)$, we have $\cos \theta>0$. Also, $4>\cos \theta \Rightarrow 4-\cos \theta>0$.
$\therefore \cos \theta(4-\cos \theta)>0$ and also $(2+\cos \theta)^{2}>0$
$\Rightarrow \frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}}>0$
$\Rightarrow \frac{d y}{d x}>0$
Therefore, y is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$.
Also, the given function is continuous at $\quad x=0$ and $x=\frac{\pi}{2}$.
Hence, y is increasing in interval $\left[0, \frac{\pi}{2}\right]$.

Question 10:

Prove that the logarithmic function is strictly increasing on $(0, \infty)$.
Answer
The given function is $f(x)=\log x$.
$\therefore f^{\prime}(x)=\frac{1}{x}$
It is clear that for $x>0, f^{\prime}(x)=\frac{1}{x}>0$.
Hence, $f(x)=\log x$ is strictly increasing in interval $(0, \infty)$.

Question 11:

Prove that the function f given by $f(x)=x^{2}-x+1$ is neither strictly increasing nor strictly decreasing on $(-1,1)$.
Answer

The given function is $f(x)=x^{2}-x+1$.
$\therefore f^{\prime}(x)=2 x-1$
Now, $f^{\prime}(x)=0 \Rightarrow x=\frac{1}{2}$.
The point $\frac{1}{2}$ divides the interval $(-1,1)$ into two disjoint intervals
i.e., $\left(-1, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right)$.

Now, in interval $\left(-1, \frac{1}{2}\right), f^{\prime}(x)=2 x-1<0$.
Therefore, f is strictly decreasing in interval $\left(-1, \frac{1}{2}\right)$.
However, in interval $\left(\frac{1}{2}, 1\right), f^{\prime}(x)=2 x-1>0$.
Therefore, f is strictly increasing in interval $\left(\frac{1}{2}, 1\right)$.
Hence, f is neither strictly increasing nor decreasing in interval ($-1,1$).

Question 12:

Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right)$?
(A) $\cos x$ (B) $\cos 2 x(C) \cos 3 x(D) \tan x$

Answer
(A) Let $f_{1}(x)=\cos x$.
$\therefore f_{1}^{\prime}(x)=-\sin x$
In interval $\left(0, \frac{\pi}{2}\right), f_{1}^{\prime}(x)=-\sin x<0$.
$\therefore f_{1}(x)=\cos x$ is strictly decreasing in interval $\left(0, \frac{\pi}{2}\right)$.
(B) Let $f_{2}(x)=\cos 2 x$.
$\therefore f_{2}^{\prime}(x)=-2 \sin 2 x$
Now, $0<x<\frac{\pi}{2} \Rightarrow 0<2 x<\pi \Rightarrow \sin 2 x>0 \Rightarrow-2 \sin 2 x<0$
$\therefore f_{2}^{\prime}(x)=-2 \sin 2 x<0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f_{2}(x)=\cos 2 x$ is strictly decreasing in interval $\left(0, \frac{\pi}{2}\right)$.
(C) Let $f_{3}(x)=\cos 3 x$.
$\therefore f_{3}^{\prime}(x)=-3 \sin 3 x$
Now, $f_{3}^{\prime}(x)=0$.
$\Rightarrow \sin 3 x=0 \Rightarrow 3 x=\pi$, as $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow x=\frac{\pi}{3}$
The point $x=\frac{\pi}{3}$ divides the interval $\left(0, \frac{\pi}{2}\right)$ into two disjoint intervals
i.e., $0\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.

Now, in interval $\left(0, \frac{\pi}{3}\right), f_{3}(x)=-3 \sin 3 x<0\left[\right.$ as $\left.0<x<\frac{\pi}{3} \Rightarrow 0<3 x<\pi\right]$.
$\therefore f_{3}$ is strictly decreasing in interval $\left(0, \frac{\pi}{3}\right)$.

However, in interval $\left(\frac{\pi}{3}, \frac{\pi}{2}\right), f_{3}(x)=-3 \sin 3 x>0\left[\right.$ as $\left.\frac{\pi}{3}<x<\frac{\pi}{2} \Rightarrow \pi<3 x<\frac{3 \pi}{2}\right]$.
$\therefore f_{3}$ is strictly increasing in interval $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.

Hence, f_{3} is neither increasing nor decreasing in interval $\left(0, \frac{\pi}{2}\right)$.
(D) Let $f_{4}(x)=\tan x$.
$\therefore f_{4}^{\prime}(x)=\sec ^{2} x$
In interval $\left(0, \frac{\pi}{2}\right), f_{4}^{\prime}(x)=\sec ^{2} x>0$.
$\therefore f_{4}$ is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$.

Therefore, functions $\cos x$ and $\cos 2 x$ are strictly decreasing in $\left(0, \frac{\pi}{2}\right)$. Hence, the correct answers are A and B.

Question 13:

On which of the following intervals is the function f given by $f(x)=x^{100}+\sin x-1$ strictly decreasing?
(A) $(0,1)_{(B)}\left(\frac{\pi}{2}, \pi\right)$
(C) $\left(0, \frac{\pi}{2}\right)$ (D) None of these

Answer
We have,
$f(x)=x^{100}+\sin x-1$
$\therefore f^{\prime}(x)=100 x^{99}+\cos x$
In interval $(0,1), \cos x>0$ and $100 x^{99}>0$.
$\therefore f^{\prime}(x)>0$.
Thus, function f is strictly increasing in interval $(0,1)$.
In interval $\left(\frac{\pi}{2}, \pi\right), \cos x<0$ and $100 x^{99}>0$. Also, $100 x^{99}>\cos x$.
$\therefore f^{\prime}(x)>0$ in $\left(\frac{\pi}{2}, \pi\right)$.
Thus, function f is strictly increasing in interval $\left(\frac{\pi}{2}, \pi\right)$.
In interval $\left(0, \frac{\pi}{2}\right), \cos x>0$ and $100 x^{99}>0$.
$\therefore 100 x^{99}+\cos x>0$
$\Rightarrow f^{\prime}(x)>0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f$ is strictly increasing in interval $\quad 2)$

Hence, function f is strictly decreasing in none of the intervals.
The correct answer is D.

Question 14:

Find the least value of a such that the function f given $f(x)=x^{2}+a x+1$ is strictly increasing on $(1,2)$.
Answer
We have,
$f(x)=x^{2}+a x+1$
$\therefore f^{\prime}(x)=2 x+a$
Now, function f will be increasing in $(1,2)$, if $f^{\prime}(x)>0$ in $(1,2)$.
$f^{\prime}(x)>0$
$\Rightarrow 2 x+a>0$
$\Rightarrow 2 x>-a$
$\Rightarrow x>\frac{-a}{2}$

Therefore, we have to find the least value of a such that
$x>\frac{-a}{2}$, when $x \in(1,2)$.
$\Rightarrow x>\frac{-a}{2}($ when $1<x<2)$
Thus, the least value of a for f to be increasing on $(1,2)$ is given by,
$\frac{-a}{2}=1$
$\frac{-a}{2}=1 \Rightarrow a=-2$
Hence, the required value of a is -2 .

Question 15:

Let \mathbf{I} be any interval disjoint from $(-1,1)$. Prove that the function f given by $f(x)=x+\frac{1}{x}$ x is strictly increasing on \mathbf{I}.
Answer
We have,
$f(x)=x+\frac{1}{x}$
$\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}$
Now,
$f^{\prime}(x)=0 \Rightarrow \frac{1}{x^{2}}=1 \Rightarrow x= \pm 1$
The points $x=1$ and $x=-1$ divide the real line in three disjoint intervals i.e.,
$(-\infty,-1),(-1,1)$, and $(1, \infty)$.
In interval ($-1,1$), it is observed that:

$$
\begin{aligned}
& -1<x<1 \\
& \Rightarrow x^{2}<1 \\
& \Rightarrow 1<\frac{1}{x^{2}}, x \neq 0 \\
& \Rightarrow 1-\frac{1}{x^{2}}<0, x \neq 0 \\
& \therefore f^{\prime}(x)=1-\frac{1}{x^{2}}<0 \text { on }(-1,1) \sim\{0\} .
\end{aligned}
$$

$\therefore f$ is strictly decreasing on $(-1,1) \sim\{0\}$.

In intervals $(-\infty,-1)$ and $(1, \infty)$, it is observed that:
$x<-1$ or $1<x$
$\Rightarrow x^{2}>1$
$\Rightarrow 1>\frac{1}{x^{2}}$
$\Rightarrow 1-\frac{1}{x^{2}}>0$
$\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}>0$ on $(-\infty,-1)$ and $(1, \infty)$.
$\therefore f$ is strictly increasing on $(-\infty, 1)$ and $(1, \infty)$.

Hence, function f is strictly increasing in interval \mathbf{I} disjoint from ($-1,1$).
Hence, the given result is proved.

Question 16:

Prove that the function f given by $f(x)=\log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and
strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.
Answer
We have,
$f(x)=\log \sin x$
$\therefore f^{\prime}(x)=\frac{1}{\sin x} \cos x=\cot x$
In interval $\left(0, \frac{\pi}{2}\right), f^{\prime}(x)=\cot x>0$.
$\therefore f$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.

In interval $\left(\frac{\pi}{2}, \pi\right), f^{\prime}(x)=\cot x<0$.
$\therefore f$ is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.

Question 17:
Prove that the function f given by $f(x)=\log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.
Answer
We have,
$f(x)=\log \cos x$
$\therefore f^{\prime}(x)=\frac{1}{\cos x}(-\sin x)=-\tan x$
In interval $\left(0, \frac{\pi}{2}\right), \tan x>0 \Rightarrow-\tan x<0$.
$\therefore f^{\prime}(x)<0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.

In interval $\left(\frac{\pi}{2}, \pi\right), \tan x<0 \Rightarrow-\tan x>0$.
$\therefore f^{\prime}(x)>0$ on $\left(\frac{\pi}{2}, \pi\right)$
$\therefore f$ is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.

Question 18:

Prove that the function given by $f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing in \mathbf{R}.
Answer
We have,

$$
\begin{aligned}
f(x) & =x^{3}-3 x^{2}+3 x-100 \\
f^{\prime}(x) & =3 x^{2}-6 x+3 \\
& =3\left(x^{2}-2 x+1\right) \\
& =3(x-1)^{2}
\end{aligned}
$$

For any $x \in \mathbf{R},(x-1)^{2}>0$.

Thus, $f^{\prime}(x)$ is always positive in \mathbf{R}.
Hence, the given function (f) is increasing in \mathbf{R}.

Question 19:
The interval in which $y=x^{2} e^{-x}$ is increasing is
(A) ${ }^{(-\infty, \infty)}$ (B) (-2,0)(C) $(2, \infty)$ (D) $(0,2)$

Answer
We have,
$y=x^{2} e^{-x}$
$\therefore \frac{d y}{d x}=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x)$
Now, $\frac{d y}{d x}=0$.
$\Rightarrow x=0$ and $x=2$
The points $x=0$ and $x=2$ divide the real line into three disjoint intervals
i.e., $(-\infty, 0),(0,2)$, and $(2, \infty)$.

In intervals $(-\infty, 0)$ and $(2, \infty), f^{\prime}(x)<0$ as e^{-x} is always positive.
$\therefore f$ is decreasing on $(-\infty, 0)$ and $(2, \infty)$.

In interval $(0,2), f^{\prime}(x)>0$.
$\therefore f$ is strictly increasing on $(0,2)$.

Hence, f is strictly increasing in interval (0,2).
The correct answer is D.

