Exercise 6.2

Question 1:

Show that the function given by f(x) = 3x + 17 is strictly increasing on **R**.

Answer

Let x_1 and x_2 be any two numbers in **R**.

Then, we have:

$$x_1 < x_2 \Longrightarrow 3x_1 < 3x_2 \Longrightarrow 3x_1 + 17 < 3x_2 + 17 \Longrightarrow f(x_1) < f(x_2)$$

Hence, f is strictly increasing on R.

Alternate method:

f(x) = 3 > 0, in every interval of **R**. Thus, the function is strictly increasing on **R**.

Question 2:

Show that the function given by $f(x) = e^{2x}$ is strictly increasing on **R**. Answer

Let x_1 and x_2 be any two numbers in **R**.

Then, we have:

$$x_1 < x_2 \Longrightarrow 2x_1 < 2x_2 \Longrightarrow e^{2x_1} < e^{2x_2} \Longrightarrow f(x_1) < f(x_2)$$

Hence, f is strictly increasing on **R**.

Question 3:

Show that the function given by $f(x) = \sin x$ is

(a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$ (b) strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$ (c) neither increasing nor decreasing in $(0, \pi)$ Answer The given function is $f(x) = \sin x$. $\therefore f'(x) = \cos x$

(a) Since for each
$$x \in \left(0, \frac{\pi}{2}\right), \cos x > 0$$
, we have $f'(x) > 0$.
Hence, f is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.
(b) Since for each $x \in \left(\frac{\pi}{2}, \pi\right), \cos x < 0$, we have $f'(x) < 0$.
Hence, f is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.
(c) From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in $(0, \pi)$.
Question 4:
Find the intervals in which the function f given by $f(x) = 2x^2 - 3x$ is
(a) strictly increasing (b) strictly decreasing
Answer
The given function is $f(x) = 2x^2 - 3x$.
 $f'(x) = 4x - 3$
 $\therefore f'(x) = 0 \Rightarrow x = \frac{3}{4}$
Now, the point $\frac{3}{4}$ divides the real line into two disjoint intervals i.e., $\left(-\infty, \frac{3}{4}\right)_{and}\left(\frac{3}{4}, \infty\right)$.
 $\xrightarrow{-\infty}$ $\xrightarrow{\frac{1}{3}}$
In interval $\left(-\infty, \frac{3}{4}\right), f''(x) = 4x - 3 < 0$.

Chapter 6 – Application of Derivatives

ς.

In interval

Class XII

Hence, the given function (f) is strictly decreasing in interval

In interval
$$\left(\frac{3}{4},\infty\right), f'(x) = 4x - 3 > 0.$$

 $\left(-\infty,\frac{3}{4}\right)$

Hence, the given function (*f*) is strictly increasing in interval $\left(\frac{3}{4},\infty\right)$

Question 5:

Find the intervals in which the function *f* given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is (a) strictly increasing (b) strictly decreasing Answer The given function is $f(x) = 2x^3 - 3x^2 - 36x + 7$. $f'(x) = 6x^2 - 6x - 36 = 6(x^2 - x - 6) = 6(x + 2)(x - 3)$

$$\therefore f'(x) = 0 \Longrightarrow x = -2, 3$$

The points x = -2 and x = 3 divide the real line into three disjoint intervals i.e., $(-\infty, -2), (-2, 3)$, and $(3, \infty)$.

$$-\infty$$
 -2 3 ∞

In intervals $(-\infty, -2)$ and $(3, \infty)$, f'(x) is positive while in interval

$$(-2, 3), \int (x)$$
 is negative.
Hence, the given function (f) is strictly increasing in intervals

 $(-\infty, -2)$ and $(3, \infty)$, while function (*f*) is strictly decreasing in interval (-2, 3).

Question 6:

Find the intervals in which the following functions are strictly increasing or decreasing: (a) $x^2 + 2x - 5$ (b) $10 - 6x - 2x^2$ (c) $-2x^3 - 9x^2 - 12x + 1$ (d) $6 - 9x - x^2$ (e) $(x + 1)^3 (x - 3)^3$ Answer

(a) We have, $f(x) = x^2 + 2x - 5$ $\therefore f'(x) = 2x + 2$

Now,

$$f'(x) = 0 \Longrightarrow x = -1$$

Point x = -1 divides the real line into two disjoint intervals i.e., $(-\infty, -1)$ and $(-1, \infty)$. In interval $(-\infty, -1)$, f'(x) = 2x + 2 < 0.

$$\therefore f$$
 is strictly decreasing in interval $(-\infty, -1)$.

Thus, *f* is strictly decreasing for x < -1. In interval $(-1, \infty)$, f'(x) = 2x + 2 > 0.

 $\therefore f$ is strictly increasing in interval $(-1,\infty)$.

Thus, *f* is strictly increasing for x > -1. (b) We have, $f(x) = 10 - 6x - 2x^2$ $\therefore f'(x) = -6 - 4x$ Now, $f'(x) = 0 \Rightarrow x = -\frac{3}{2}$ The point $x = -\frac{3}{2}$ divides the real line into two disjoint intervals i.e., $\left(-\infty, -\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, \infty\right)$. In interval $\left(-\infty, -\frac{3}{2}\right)$ i.e., when $x < -\frac{3}{2}$, f'(x) = -6 - 4x < 0. $\therefore f$ is strictly increasing for $x < -\frac{3}{2}$.

In interval
$$\left(-\frac{3}{2},\infty\right)$$
 i.e., when $x > -\frac{3}{2}$, $f'(x) = -6 - 4x < 0$.
 \therefore *f* is strictly decreasing for $x > -\frac{3}{2}$.

(c) We have,

$$f(x) = -2x^3 - 9x^2 - 12x + 1$$

 $\therefore f'(x) = -6x^2 - 18x - 12 = -6(x^2 + 3x + 2) = -6(x+1)(x+2)$
Now,
 $f'(x) = 0 \implies x = -1 \text{ and } x = -2$
Points $x = -1$ and $x = -2$ divide the real line into three disjoint intervals
i.e., $(-\infty, -2), (-2, -1), \text{ and } (-1, \infty)$.
In intervals $(-\infty, -2)$ and $(-1, \infty)$
i.e., when $x < -2$ and $x > -1$,
 $f'(x) = -6(x+1)(x+2) < 0$

: *f* is strictly decreasing for x < -2 and x > -1.

Now, in interval
$$(-2, -1)$$
 i.e., when $-2 < x < -1$, $f'(x) = -6(x+1)(x+2) > 0$.

 \therefore *f* is strictly increasing for -2 < x < -1.

(d) We have,

$$f(x) = 6 - 9x - x^{2}$$

$$\therefore f'(x) = -9 - 2x$$
Now, f'

$$(x) = 0 \text{ gives } x = -\frac{9}{2}$$

$$x = -\frac{9}{2}$$

The point 2 divides the real line into two disjoint intervals i.e.,

$$\left(-\infty, -\frac{9}{2}\right)$$
 and $\left(-\frac{9}{2}, \infty\right)$
In interval $\left(-\infty, -\frac{9}{2}\right)$ i.e., for $x < -\frac{9}{2}$, $f'(x) = -9 - 2x > 0$
 $\therefore f$ is strictly increasing for $x < -\frac{9}{2}$.

In interval
$$\left(-\frac{9}{2},\infty\right)_{i.e., \text{ for }} x > -\frac{9}{2}, f'(x) = -9 - 2x < 0.$$

 \therefore *f* is strictly decreasing for $x > -\frac{9}{2}$.

(e) We have, $f(x) = (x + 1)^{3} (x - 3)^{3}$ $f'(x) = 3(x+1)^{2} (x-3)^{3} + 3(x-3)^{2} (x+1)^{3}$ $= 3(x+1)^{2} (x-3)^{2} [x-3+x+1]$ $= 3(x+1)^{2} (x-3)^{2} (2x-2)$ $= 6(x+1)^{2} (x-3)^{2} (x-1)$ Now

$$f'(x) = 0 \implies x = -1, 3, 1$$

The points x = -1, x = 1, and x = 3 divide the real line into four disjoint intervals i.e., $\begin{pmatrix} -\infty, -1 \end{pmatrix}$, (-1, 1), (1, 3), and $\begin{pmatrix} 3, \infty \end{pmatrix}$. In intervals $\begin{pmatrix} -\infty, -1 \end{pmatrix}$ and (-1, 1), $f'(x) = 6(x+1)^2(x-3)^2(x-1) < 0$.

 \therefore *f* is strictly decreasing in intervals $(-\infty, -1)$ and (-1, 1).

In intervals (1, 3) and $(3,\infty)$, $f'(x) = 6(x+1)^2(x-3)^2(x-1) > 0$.

 \therefore *f* is strictly increasing in intervals (1, 3) and $(3,\infty)$.

Question 7:

 $y = \log(1+x) - \frac{2x}{2+x}, x > -1$, is an increasing function of x throughout its domain.

Answer

We have,

$$y = \log(1+x) - \frac{2x}{2+x}$$

$$\therefore \frac{dy}{dx} = \frac{1}{1+x} - \frac{(2+x)(2) - 2x(1)}{(2+x)^2} = \frac{1}{1+x} - \frac{4}{(2+x)^2} = \frac{x^2}{(2+x)^2}$$

Now, $\frac{dy}{dx} = 0$

$$\Rightarrow \frac{x^2}{(2+x)^2} = 0$$

$$\Rightarrow x^2 = 0 \qquad [(2+x) \neq 0 \text{ as } x > -1]$$

$$\Rightarrow x = 0$$

Since x > -1, point x = 0 divides the domain $(-1, \infty)$ in two disjoint intervals i.e., -1 < x < 0 and x > 0.

When
$$-1 < x < 0$$
, we have:
 $x < 0 \Rightarrow x^2 > 0$
 $x > -1 \Rightarrow (2+x) > 0 \Rightarrow (2+x)^2 > 0$
 $\therefore y' = \frac{x^2}{(2+x)^2} > 0$

Also, when x > 0:

$$x > 0 \Longrightarrow x^{2} > 0, \ (2+x)^{2} > 0$$

$$\therefore y' = \frac{x^{2}}{(2+x)^{2}} > 0$$

Hence, function f is increasing throughout this domain.

Question 8:

Find the values of x for which $y = [x(x-2)]^2$ is an increasing function. Answer

We have,

$$y = [x(x-2)]^2 = [x^2 - 2x]^2$$

$$\therefore \frac{dy}{dx} = y' = 2(x^2 - 2x)(2x-2) = 4x(x-2)(x-1)$$

$$\therefore \frac{dy}{dx} = 0 \implies x = 0, x = 2, x = 1.$$

The points x = 0, x = 1, and x = 2 divide the real line into four disjoint intervals i.e., $(-\infty, 0)$, (0,1) (1,2), and $(2,\infty)$.

In intervals $\left(-\infty,0\right)$ and $\left(1,2\right)$, $\frac{dy}{dx} < 0$.

∴ y is strictly decreasing in intervals $(-\infty, 0)$ and (1, 2).

However, in intervals (0, 1) and (2, ∞), $\frac{dy}{dx} > 0$.

∴ *y* is strictly increasing in intervals (0, 1) and (2, ∞).

 \therefore y is strictly increasing for 0 < x < 1 and x > 2.

Question 9:

 $y = \frac{4\sin\theta}{(2+\cos\theta)} - \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$. Answer We have,

$$y = \frac{4\sin\theta}{(2+\cos\theta)} - \theta$$

$$\therefore \frac{dy}{dx} = \frac{(2+\cos\theta)(4\cos\theta) - 4\sin\theta(-\sin\theta)}{(2+\cos\theta)^2} - 1$$

$$= \frac{8\cos\theta + 4\cos^2\theta + 4\sin^2\theta}{(2+\cos\theta)^2} - 1$$

$$= \frac{8\cos\theta + 4}{(2+\cos\theta)^2} - 1$$

Now, $\frac{dy}{dx} = 0$.

$$\Rightarrow \frac{8\cos\theta + 4}{(2+\cos\theta)^2} = 1$$

$$\Rightarrow 8\cos\theta + 4 = 4 + \cos^2\theta + 4\cos\theta$$

$$\Rightarrow \cos^2\theta - 4\cos\theta = 0$$

$$\Rightarrow \cos\theta(\cos\theta - 4) = 0$$

$$\Rightarrow \cos\theta = 0 \text{ or } \cos\theta = 4$$

Since $\cos\theta \neq 4$, $\cos\theta = 0$.

$$\cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$$

Now,

$$\frac{dy}{dx} = \frac{8\cos\theta + 4 - \left(4 + \cos^2\theta + 4\cos\theta\right)}{\left(2 + \cos\theta\right)^2} = \frac{4\cos\theta - \cos^2\theta}{\left(2 + \cos\theta\right)^2} = \frac{\cos\theta\left(4 - \cos\theta\right)}{\left(2 + \cos\theta\right)^2}$$

In interval
$$\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}$$
, we have $\cos \theta > 0$. Also, $4 > \cos \theta \Rightarrow 4 - \cos \theta > 0$.
 $\therefore \cos \theta (4 - \cos \theta) > 0$ and also $(2 + \cos \theta)^2 > 0$
 $\Rightarrow \frac{\cos \theta (4 - \cos \theta)}{(2 + \cos \theta)^2} > 0$
 $\Rightarrow \frac{dy}{(2 + \cos \theta)^2} > 0$
 $\Rightarrow \frac{dy}{dx} > 0$
Therefore, y is strictly increasing in interval $\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}$.
Also, the given function is continuous at $x = 0$ and $x = \frac{\pi}{2}$.
Hence, y is increasing in interval $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$.
Question 10:
Prove that the logarithmic function is strictly increasing on $(0, \infty)$.
Answer
The given function is $f(x) = \log x$.
 $\therefore f'(x) = \frac{1}{x}$
It is clear that for $x > 0$, $\frac{f'(x) = \frac{1}{x} > 0$.
Hence, $f(x) = \log x$ is strictly increasing in interval $(0, \infty)$.
Question 11:
Prove that the function f given by $f(x) = x^2 - x + 1$ is neither strictly increasing nor

Chapter 6 – Application of Derivatives

Maths

strictly decreasing on (-1, 1).

Answer

Class XII

Class XII

The given function is $f(x) = x^2 - x + 1$.

$$\therefore f'(x) = 2x - 1$$

Now, $f'(x) = 0 \Longrightarrow x = \frac{1}{2}$

The point ² divides the interval (-1, 1) into two disjoint intervals

i.e.,
$$\begin{pmatrix} -1, \frac{1}{2} \end{pmatrix}$$
 and $\begin{pmatrix} \frac{1}{2}, 1 \end{pmatrix}$.
Now, in interval $\begin{pmatrix} -1, \frac{1}{2} \end{pmatrix}$, $f'(x) = 2x - 1 < 0$.

Therefore, *f* is strictly decreasing in interval $\left(-1, \frac{1}{2}\right)$.

 $\left(\frac{1}{2}, 1\right), f'(x) = 2x - 1 > 0.$ However, in interval

 $\left(\frac{1}{2}, 1\right)$ Therefore, f is strictly increasing in interval

Hence, f is neither strictly increasing nor decreasing in interval (-1, 1).

Question 12:

 $\left(0,\frac{\pi}{2}\right)_{2}$ Which of the following functions are strictly decreasing on

(A) cos x (B) cos 2x (C) cos 3x (D) tan x

Answer

(A) Let
$$f_1(x) = \cos x$$
.
 $\therefore f_1'(x) = -\sin x$
In interval $\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}, f_1'(x) = -\sin x < 0$.
 $\therefore f_1(x) = \cos x$ is strictly decreasing in interval $\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}$

(B) Let
$$f_2(x) = \cos 2x$$
.
 $\therefore f_2'(x) = -2\sin 2x$
Now, $0 < x < \frac{\pi}{2} \Rightarrow 0 < 2x < \pi \Rightarrow \sin 2x > 0 \Rightarrow -2\sin 2x < 0$
 $\therefore f_2'(x) = -2\sin 2x < 0 \text{ on}\left(0, \frac{\pi}{2}\right)$
 $\therefore f_2(x) = \cos 2x$ is strictly decreasing in interval $\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}$.
(C) Let $f_3(x) = \cos 3x$.
 $\therefore f_3'(x) = -3\sin 3x$
Now, $f_3''(x) = 0$.
 $\Rightarrow \sin 3x = 0 \Rightarrow 3x = \pi, as \ x \in \left(0, \frac{\pi}{2}\right)$
 $\Rightarrow x = \frac{\pi}{3}$
The point $x = \frac{\pi}{3}$ divides the interval $\begin{pmatrix} 0, \frac{\pi}{2} \end{pmatrix}$ into two disjoint intervals
i.e., $0\begin{pmatrix} 0, \frac{\pi}{3} \end{pmatrix}$ and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.
Now, in interval $\left(0, \frac{\pi}{3}\right), f_3(x) = -3\sin 3x < 0$ $\left[as \ 0 < x < \frac{\pi}{3} \Rightarrow 0 < 3x < \pi\right]$.
 $\therefore f_3$ is strictly decreasing in interval $\begin{pmatrix} 0, \frac{\pi}{3} \end{pmatrix}$.

However, in interval
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right), f_3(x) = -3\sin 3x > 0 \left[as \ \frac{\pi}{3} < x < \frac{\pi}{2} \Rightarrow \pi < 3x < \frac{3\pi}{2}\right].$$

 $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ \therefore f_3 is strictly increasing in interval

 $\left(0, \frac{\pi}{2}\right)$ Hence, f_3 is neither increasing nor decreasing in interval

- (D) Let $f_4(x) = \tan x$. $\therefore f_4'(x) = \sec^2 x$ In interval $\left(0, \frac{\pi}{2}\right), f_4'(x) = \sec^2 x > 0.$
- $\left(0, \frac{\pi}{2}\right)$. \therefore f_4 is strictly increasing in interval

 $\left(0, \frac{\pi}{2}\right).$ Therefore, functions $\cos x$ and $\cos 2x$ are strictly decreasing in Hence, the correct answers are A and B.

```
Question 13:
```

On which of the following intervals is the function *f* given by $f(x) = x^{100} + \sin x - 1$ strictly decreasing?

(A) $(0, 1)_{(B)} \left(\frac{\pi}{2}, \pi\right)$ (C) $\left(0, \frac{\pi}{2}\right)$ (D) None of these Answer We have,

$$f(x) = x^{100} + \sin x - 1$$

$$\therefore f'(x) = 100x^{99} + \cos x$$

In interval^(0, 1), $\cos x > 0$ and $100x^{99} > 0$.

~

$$\therefore f'(x) > 0.$$

Thus, function f is strictly increasing in interval (0, 1).

In interval
$$\left(\frac{\pi}{2},\pi\right)$$
, $\cos x < 0$ and $100 x^{99} > 0$. Also, $100 x^{99} > \cos x$
 $\therefore f'(x) > 0$ in $\left(\frac{\pi}{2},\pi\right)$.

 $\left(\frac{\pi}{2}, \pi\right)$ Thus, function f is strictly increasing in interval

In interval
$$\left(0, \frac{\pi}{2}\right)$$
, $\cos x > 0$ and $100x^{99} > 0$.
 $\therefore 100x^{99} + \cos x > 0$
 $\Rightarrow f'(x) > 0$ on $\left(0, \frac{\pi}{2}\right)$
 \Rightarrow f is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$

 \therefore f is strictly increasing in interval \checkmark \checkmark .

Hence, function *f* is strictly decreasing in none of the intervals. The correct answer is D.

Question 14:

Find the least value of *a* such that the function *f* given $f(x) = x^2 + ax + 1$ is strictly increasing on (1, 2). Answer

We have,

$$f(x) = x^{2} + ax + 1$$

$$\therefore f'(x) = 2x + a$$

Now, function *f* will be increasing in (1, 2), if f'(x) > 0 in (1, 2). f'(x) > 0

 $\Rightarrow 2x + a > 0$

 $\Rightarrow 2x > -a$

$$\Rightarrow x > \frac{-a}{2}$$

Therefore, we have to find the least value of *a* such that

$$x > \frac{-a}{2}$$
, when $x \in (1, 2)$.
 $\Rightarrow x > \frac{-a}{2}$ (when $1 < x < 2$)

Thus, the least value of a for f to be increasing on (1, 2) is given by,

$$\frac{-a}{2} = 1$$
$$\frac{-a}{2} = 1 \Longrightarrow a = -2$$

Hence, the required value of a is -2.

Question 15:

Let **I** be any interval disjoint from (-1, 1). Prove that the function f given by

$$f(x) = x + \frac{1}{x}$$
 is strictly i

x is strictly increasing on **I**.

Answer

We have,

$$f(x) = x + \frac{1}{x}$$
$$\therefore f'(x) = 1 - \frac{1}{x^2}$$

Now,

$$f'(x) = 0 \Rightarrow \frac{1}{x^2} = 1 \Rightarrow x = \pm 1$$

The points x = 1 and x = -1 divide the real line in three disjoint intervals i.e.,

$$(-\infty, -1), (-1, 1), \text{ and } (1, \infty)$$

In interval (-1, 1), it is observed that:

$$-1 < x < 1$$

$$\Rightarrow x^{2} < 1$$

$$\Rightarrow 1 < \frac{1}{x^{2}}, x \neq 0$$

$$\Rightarrow 1 - \frac{1}{x^{2}} < 0, x \neq 0$$

$$\therefore f'(x) = 1 - \frac{1}{x^{2}} < 0 \text{ on } (-1, 1) \sim \{0\}.$$

 $\therefore f$ is strictly decreasing on $(-1, 1) \sim \{0\}$.

In intervals $\left(-\infty,-1\right)$ and $\left(1,\ \infty\right)$, it is observed that:

Class XII Chapter 6 – Application of Derivatives Maths

$$x < -1 \text{ or } 1 < x$$

 $\Rightarrow x^2 > 1$
 $\Rightarrow 1 > \frac{1}{x^2}$
 $\Rightarrow 1 - \frac{1}{x^2} > 0$
 $\therefore f'(x) = 1 - \frac{1}{x^2} > 0 \text{ on } (-\infty, -1) \text{ and } (1, \infty).$
 $\therefore f \text{ is strictly increasing on } (-\infty, 1) \text{ and } (1, \infty).$

Hence, function f is strictly increasing in interval **I** disjoint from (-1, 1). Hence, the given result is proved.

Question 16:

Prove that the function f given by $f(x) = \log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$. Answer We have, $f(x) = \log \sin x$ $\therefore f'(x) = \frac{1}{\sin x} \cos x = \cot x$ In interval $\left(0, \frac{\pi}{2}\right), f'(x) = \cot x > 0$. In interval $\left(0, \frac{\pi}{2}\right)$.

Class XII Chapter 6 – Application of Derivatives Maths
In interval
$$\left(\frac{\pi}{2}, \pi\right), f'(x) = \cot x < 0.$$

In interval $\left(\frac{\pi}{2}, \pi\right), f'(x) = \cot x < 0.$
An interval $\left(\frac{\pi}{2}, \pi\right), f'(x) = \cot x < 0.$
Question 17:
Prove that the function f given by $f(x) = \log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and
strictly increasing on $\left(\frac{\pi}{2}, \pi\right).$
Answer
We have,
 $f(x) = \log \cos x$
 $\therefore f'(x) = \frac{1}{\cos x}(-\sin x) = -\tan x$
In interval $\left(0, \frac{\pi}{2}\right), \tan x > 0 \Rightarrow -\tan x < 0.$
In interval $\left(0, \frac{\pi}{2}\right)$
 $\therefore f$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.
In interval $\left(\frac{\pi}{2}, \pi\right), \tan x < 0 \Rightarrow -\tan x > 0.$
In interval $\left(\frac{\pi}{2}, \pi\right), \tan x < 0 \Rightarrow -\tan x > 0.$
In interval $\left(\frac{\pi}{2}, \pi\right), \tan x < 0 \Rightarrow -\tan x > 0.$

.

_.

Class XII Chapter 6 – Application of Derivatives Maths

$$\therefore f$$
 is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.
Question 18:
Prove that the function given by $f(x) = x^3 - 3x^2 + 3x - 100$ is increasing in **R**.
Answer
We have,
 $f(x) = x^3 - 3x^2 + 3x - 100$
 $f'(x) = 3x^2 - 6x + 3$
 $= 3(x^2 - 2x + 1)$
 $= 3(x - 1)^2$
For any $x \in \mathbf{R}$, $(x - 1)^2 > 0$.

Thus, f'(x) is always positive in **R**. Hence, the given function (*f*) is increasing in **R**.

Question 19:

The interval in which $y = x^2 e^{-x}$ is increasing is (A) $(-\infty, \infty)$ (B) (-2, 0) (C) $(2, \infty)$ (D) (0, 2)Answer We have, $y = x^2 e^{-x}$

$$\therefore \frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} = xe^{-x}(2-x)$$

Now, $\frac{dy}{dx} = 0$.
 $\Rightarrow x = 0$ and $x = 2$

The points x = 0 and x = 2 divide the real line into three disjoint intervals

i.e.,
$$(-\infty, 0)$$
, $(0, 2)$, and $(2, \infty)$.
In intervals $(-\infty, 0)$ and $(2, \infty)$, $f'(x) < 0$ as e^{-x} is always positive.

$$\therefore f$$
 is decreasing on $(-\infty, 0)$ and $(2, \infty)$.

In interval (0, 2),
$$f'(x) > 0$$
.

 \therefore *f* is strictly increasing on (0, 2).

Hence, f is strictly increasing in interval (0, 2). The correct answer is D.