## Exercise 6.3

## Question 1:

Find the slope of the tangent to the curve $y=3 x^{4}-4 x$ at $x=4$.
Answer
The given curve is $y=3 x^{4}-4 x$.
Then, the slope of the tangent to the given curve at $x=4$ is given by,
$\left.\left.\frac{d y}{d x}\right]_{x=4}=12 x^{3}-4\right]_{x=4}=12(4)^{3}-4=12(64)-4=764$

## Question 2:

Find the slope of the tangent to the curve $y=\frac{x-1}{x-2}, x \neq 2$ at $x=10$.
Answer
The given curve is $y=\frac{x-1}{x-2}$.

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =\frac{(x-2)(1)-(x-1)(1)}{(x-2)^{2}} \\
& =\frac{x-2-x+1}{(x-2)^{2}}=\frac{-1}{(x-2)^{2}}
\end{aligned}
$$

Thus, the slope of the tangent at $x=10$ is given by,
$\left.\left.\frac{d y}{d x}\right]_{x=10}=\frac{-1}{(x-2)^{2}}\right]_{x=10}=\frac{-1}{(10-2)^{2}}=\frac{-1}{64}$
Hence, the slope of the tangent at $x=10$ is $\frac{-1}{64}$.

## Question 3:

Find the slope of the tangent to curve $y=x^{3}-x+1$ at the point whose $x$-coordinate is 2.

Answer

The given curve is $y^{3}=x^{3}-x+1$.
$\therefore \frac{d y}{d x}=3 x^{2}-1$
The slope of the tangent to a curve at $\left(x_{0}, y_{0}\right)$ is $\left.\frac{d y}{d x}\right]_{\left(x_{0}, y_{0}\right)}$.
It is given that $x_{0}=2$.
Hence, the slope of the tangent at the point where the $x$-coordinate is 2 is given by,
$\left.\left.\frac{d y}{d x}\right]_{x=2}=3 x^{2}-1\right]_{x=2}=3(2)^{2}-1=12-1=11$

## Question 4:

Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose $x-$ coordinate is 3.

Answer
The given curve is $y=x^{3}-3 x+2$.
$\therefore \frac{d y}{d x}=3 x^{2}-3$
The slope of the tangent to a curve at $\left(x_{0}, y_{0}\right)$ is $\left.\frac{d y}{d x}\right]_{\left(x_{0}, y_{0}\right)}$.
Hence, the slope of the tangent at the point where the $x$-coordinate is 3 is given by,
$\left.\left.\frac{d y}{d x}\right]_{x=3}=3 x^{2}-3\right]_{x=3}=3(3)^{2}-3=27-3=24$

## Question 5:

Find the slope of the normal to the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$.
Answer
It is given that $x=a \cos ^{3} \theta$ and $y=a \sin ^{3} \theta$.

$$
\begin{aligned}
& \therefore \frac{d x}{d \theta}=3 a \cos ^{2} \theta(-\sin \theta)=-3 a \cos ^{2} \theta \sin \theta \\
& \frac{d y}{d \theta}=3 a \sin ^{2} \theta(\cos \theta)
\end{aligned}
$$

$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{3 a \sin ^{2} \theta \cos \theta}{-3 a \cos ^{2} \theta \sin \theta}=-\frac{\sin \theta}{\cos \theta}=-\tan \theta$
Therefore, the slope of the tangent at $\theta=\frac{\pi}{4}$ is given by,
$\left.\left.\frac{d y}{d x}\right]_{\theta=\frac{\pi}{4}}=-\tan \theta\right]_{\theta=\frac{\pi}{4}}=-\tan \frac{\pi}{4}=-1$
Hence, the slope of the normal at $\theta=\frac{\pi}{4}$ is given by,
$\frac{1}{\text { slope of the tangent at } \theta=\frac{\pi}{4}}=\frac{-1}{-1}=1$

## Question 6:

Find the slope of the normal to the curve $x=1-a \sin \theta, y=b \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.
Answer
It is given that $x=1-a \sin \theta$ and $y=b \cos ^{2} \theta$.
$\therefore \frac{d x}{d \theta}=-a \cos \theta$ and $\frac{d y}{d \theta}=2 b \cos \theta(-\sin \theta)=-2 b \sin \theta \cos \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{-2 b \sin \theta \cos \theta}{-a \cos \theta}=\frac{2 b}{a} \sin \theta$
Therefore, the slope of the tangent at $\theta=\frac{\pi}{2}$ is given by,
$\left.\left.\frac{d y}{d x}\right]_{\theta=\frac{\pi}{2}}=\frac{2 b}{a} \sin \theta\right]_{\theta=\frac{\pi}{2}}=\frac{2 b}{a} \sin \frac{\pi}{2}=\frac{2 b}{a}$
Hence, the slope of the normal at $\theta=\frac{\pi}{2}$ is given by,
$\frac{1}{\text { slope of the tangent at } \theta=\frac{\pi}{4}}=\frac{-1}{\left(\frac{2 b}{a}\right)}=-\frac{a}{2 b}$

## Question 7:

Find points at which the tangent to the curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to the $x-$ axis.
Answer
The equation of the given curve is $y=x^{3}-3 x^{2}-9 x+7$.
$\therefore \frac{d y}{d x}=3 x^{2}-6 x-9$
Now, the tangent is parallel to the $x$-axis if the slope of the tangent is zero.

$$
\begin{aligned}
\therefore 3 x^{2}-6 x-9=0 & \Rightarrow x^{2}-2 x-3=0 \\
& \Rightarrow(x-3)(x+1)=0 \\
& \Rightarrow x=3 \text { or } x=-1
\end{aligned}
$$

When $x=3, y=(3)^{3}-3(3)^{2}-9(3)+7=27-27-27+7=-20$.
When $x=-1, y=(-1)^{3}-3(-1)^{2}-9(-1)+7=-1-3+9+7=12$.
Hence, the points at which the tangent is parallel to the $x$-axis are $(3,-20)$ and $(-1,12)$.

## Question 8:

Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.

Answer
If a tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$, then the slope of the tangent $=$ the slope of the chord .

The slope of the chord is $\frac{4-0}{4-2}=\frac{4}{2}=2$.
Now, the slope of the tangent to the given curve at a point $(x, y)$ is given by,
$\frac{d y}{d x}=2(x-2)$
Since the slope of the tangent = slope of the chord, we have:
$2(x-2)=2$
$\Rightarrow x-2=1 \Rightarrow x=3$
When $x=3, y=(3-2)^{2}=1$.
Hence, the required point is $(3,1)$.

## Question 9:

Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is $y=x-11$.
Answer
The equation of the given curve is $y=x^{3}-11 x+5$.
The equation of the tangent to the given curve is given as $y=x-11$ (which is of the form $y=m x+c)$.
$\therefore$ Slope of the tangent $=1$

Now, the slope of the tangent to the given curve at the point $(x, y)$ is given by, $\frac{d y}{d x}=3 x^{2}-11$
Then, we have:
$3 x^{2}-11=1$
$\Rightarrow 3 x^{2}=12$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm 2$
When $x=2, y=(2)^{3}-11(2)+5=8-22+5=-9$.
When $x=-2, y=(-2)^{3}-11(-2)+5=-8+22+5=19$.

Hence, the required points are $(2,-9)$ and $(-2,19)$.

## Question 10:

Find the equation of all lines having slope -1 that are tangents to the curve

$$
y=\frac{1}{x-1}, x \neq 1
$$

Answer
The equation of the given curve is $y=\frac{1}{x-1}, x \neq 1$.
The slope of the tangents to the given curve at any point $(x, y)$ is given by,
$\frac{d y}{d x}=\frac{-1}{(x-1)^{2}}$
If the slope of the tangent is -1 , then we have:

$$
\begin{aligned}
& \frac{-1}{(x-1)^{2}}=-1 \\
& \Rightarrow(x-1)^{2}=1 \\
& \Rightarrow x-1= \pm 1 \\
& \Rightarrow x=2,0
\end{aligned}
$$

When $x=0, y=-1$ and when $x=2, y=1$.
Thus, there are two tangents to the given curve having slope -1 . These are passing through the points $(0,-1)$ and $(2,1)$.
$\therefore$ The equation of the tangent through $(0,-1)$ is given by,
$y-(-1)=-1(x-0)$
$\Rightarrow y+1=-x$
$\Rightarrow y+x+1=0$
$\therefore$ The equation of the tangent through $(2,1)$ is given by,
$y-1=-1(x-2)$
$\Rightarrow y-1=-x+2$
$\Rightarrow y+x-3=0$

Hence, the equations of the required lines are $y+x+1=0$ and $y+x-3=0$.

Question 11:
Find the equation of all lines having slope 2 which are tangents to the
curve $y=\frac{1}{x-3}, x \neq 3$.
Answer
The equation of the given curve is $y=\frac{1}{x-3}, x \neq 3$.
The slope of the tangent to the given curve at any point $(x, y)$ is given by,
$\frac{d y}{d x}=\frac{-1}{(x-3)^{2}}$
If the slope of the tangent is 2 , then we have:
$\frac{-1}{(x-3)^{2}}=2$
$\Rightarrow 2(x-3)^{2}=-1$
$\Rightarrow(x-3)^{2}=\frac{-1}{2}$
This is not possible since the L.H.S. is positive while the R.H.S. is negative.
Hence, there is no tangent to the given curve having slope 2.

## Question 12:

Find the equations of all lines having slope 0 which are tangent to the curve
$y=\frac{1}{x^{2}-2 x+3}$.
Answer
The equation of the given curve is $y=\frac{1}{x^{2}-2 x+3}$.
The slope of the tangent to the given curve at any point $(x, y)$ is given by,
$\frac{d y}{d x}=\frac{-(2 x-2)}{\left(x^{2}-2 x+3\right)^{2}}=\frac{-2(x-1)}{\left(x^{2}-2 x+3\right)^{2}}$
If the slope of the tangent is 0 , then we have:
$\frac{-2(x-1)}{\left(x^{2}-2 x+3\right)^{2}}=0$
$\Rightarrow-2(x-1)=0$
$\Rightarrow x=1$
When $x=1, \quad y=\frac{1}{1-2+3}=\frac{1}{2}$.
$\therefore$ The equation of the tangent through $\left(1, \frac{1}{2}\right)$ is given by,
$y-\frac{1}{2}=0(x-1)$
$\Rightarrow y-\frac{1}{2}=0$
$\Rightarrow y=\frac{1}{2}$
Hence, the equation of the required line is $y=\frac{1}{2}$.

## Question 13:

Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are
(i) parallel to $x$-axis (ii) parallel to $y$-axis

Answer
The equation of the given curve is $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
On differentiating both sides with respect to $x$, we have:
$\frac{2 x}{9}+\frac{2 y}{16} \cdot \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-16 x}{9 y}$
(i) The tangent is parallel to the $x$-axis if the slope of the tangent is i.e., $09 y=0$, which is possible if $x=0$.

Then, $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ for $x=0$
$\Rightarrow y^{2}=16 \Rightarrow y= \pm 4$
Hence, the points at which the tangents are parallel to the $x$-axis are $(0,4)$ and $(0,-4)$.
(ii) The tangent is parallel to the $y$-axis if the slope of the normal is 0 , which
$\frac{-1}{\left(\frac{-16 x}{9 y}\right)}=\frac{9 y}{16 x}=0$
$\Rightarrow y=0$.

Then, $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ for $y=0$.
$\Rightarrow x= \pm 3$
Hence, the points at which the tangents are parallel to the $y$-axis are $(3,0)$ and $(-3,0)$.

## Question 14:

Find the equations of the tangent and normal to the given curves at the indicated points:
(i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$
(ii) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(1,3)$
(iii) $y=x^{3}$ at $(1,1)$
(iv) $y=x^{2}$ at $(0,0)$
(v) $x=\cos t, y=\sin t$ at $t=\frac{\pi}{4}$

Answer
(i) The equation of the curve is $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$.

On differentiating with respect to $x$, we get:
$\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
$\left.\frac{d y}{d x}\right]_{(0,5)}=-10$
Thus, the slope of the tangent at $(0,5)$ is -10 . The equation of the tangent is given as:
$y-5=-10(x-0)$
$\Rightarrow y-5=-10 x$
$\Rightarrow 10 x+y=5$

The slope of the normal at $(0,5)$ is $\frac{-1}{\text { Slope of the tangent at }(0,5)}=\frac{1}{10}$.
Therefore, the equation of the normal at $(0,5)$ is given as:
$y-5=\frac{1}{10}(x-0)$
$\Rightarrow 10 y-50=x$
$\Rightarrow x-10 y+50=0$
(ii) The equation of the curve is $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$.

On differentiating with respect to $x$, we get:
$\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
$\left.\frac{d y}{d x}\right]_{(1,3)}=4-18+26-10=2$
Thus, the slope of the tangent at $(1,3)$ is 2 . The equation of the tangent is given as:
$y-3=2(x-1)$
$\Rightarrow y-3=2 x-2$
$\Rightarrow y=2 x+1$
The slope of the normal at $(1,3)$ is $\frac{-1}{\text { Slope of the tangent at }(1,3)}=\frac{-1}{2}$.
Therefore, the equation of the normal at $(1,3)$ is given as:
$y-3=-\frac{1}{2}(x-1)$
$\Rightarrow 2 y-6=-x+1$
$\Rightarrow x+2 y-7=0$
(iii) The equation of the curve is $y=x^{3}$.

On differentiating with respect to $x$, we get:
$\frac{d y}{d x}=3 x^{2}$
$\left.\frac{d y}{d x}\right]_{(1,1)}=3(1)^{2}=3$
Thus, the slope of the tangent at $(1,1)$ is 3 and the equation of the tangent is given as:
$y-1=3(x-1)$
$\Rightarrow y=3 x-2$

The slope of the normal at $(1,1)$ is $\overline{-1}$ Slope of the tangent at $(1,1)=\frac{-1}{3}$.
Therefore, the equation of the normal at $(1,1)$ is given as:
$y-1=\frac{-1}{3}(x-1)$
$\Rightarrow 3 y-3=-x+1$
$\Rightarrow x+3 y-4=0$
(iv) The equation of the curve is $y=x^{2}$.

On differentiating with respect to $x$, we get:
$\frac{d y}{d x}=2 x$
$\left.\frac{d y}{d x}\right]_{(0,0)}=0$
Thus, the slope of the tangent at $(0,0)$ is 0 and the equation of the tangent is given as:
$y-0=0(x-0)$
$\Rightarrow y=0$

The slope of the normal at $(0,0)$ is $\frac{-1}{\text { Slope of the tangent at }(0,0)}=-\frac{1}{0}$, which is not defined.

Therefore, the equation of the normal at $\left(x_{0}, y_{0}\right)=(0,0)$ is given by
$x=x_{0}=0$.
(v) The equation of the curve is $x=\cos t, y=\sin t$.
$x=\cos t$ and $y=\sin t$
$\therefore \frac{d x}{d t}=-\sin t, \frac{d y}{d t}=\cos t$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\cos t}{-\sin t}=-\cot t$
$\left.\frac{d y}{d x}\right]_{t=\frac{\pi}{4}}=-\cot t=-1$
$\square$ The slope of the tangent at $t=\frac{\pi}{4}$ is -1 .
When $t=\frac{\pi}{4}, x=\frac{1}{\sqrt{2}}$ and $y=\frac{1}{\sqrt{2}}$.
Thus, the equation of the tangent to the given curve at $t=\frac{\pi}{4}$ i.e., at $\left[\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right]_{\text {is }}$
$y-\frac{1}{\sqrt{2}}=-1\left(x-\frac{1}{\sqrt{2}}\right)$.
$\Rightarrow x+y-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=0$
$\Rightarrow x+y-\sqrt{2}=0$
The slope of the normal at $t=\frac{\pi}{4}$ is $\frac{-1}{\text { Slope of the tangent at } t=\frac{\pi}{4}}=1$.

Therefore, the equation of the normal to the given curve at $t=\frac{\pi}{4}$ i.e., at $\left[\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right]_{\text {is }}$
$y-\frac{1}{\sqrt{2}}=1\left(x-\frac{1}{\sqrt{2}}\right)$.
$\Rightarrow x=y$

## Question 15:

Find the equation of the tangent line to the curve $y=x^{2}-2 x+7$ which is
(a) parallel to the line $2 x-y+9=0$
(b) perpendicular to the line $5 y-15 x=13$.

Answer
The equation of the given curve is $y=x^{2}-2 x+7$.
On differentiating with respect to $x$, we get:
$\frac{d y}{d x}=2 x-2$
(a) The equation of the line is $2 x-y+9=0$.
$2 x-y+9=0 \square y=2 x+9$
This is of the form $y=m x+c$.
$\square$ Slope of the line $=2$
If a tangent is parallel to the line $2 x-y+9=0$, then the slope of the tangent is equal to the slope of the line.

Therefore, we have:
$2=2 x-2$
$\Rightarrow 2 x=4$
$\Rightarrow x=2$
Now, $x=2$
$\Rightarrow y=4-4+7=7$
Thus, the equation of the tangent passing through $(2,7)$ is given by,
$y-7=2(x-2)$
$\Rightarrow y-2 x-3=0$

Hence, the equation of the tangent line to the given curve (which is parallel to line $2 x-$ $y+9=0)$ is $y-2 x-3=0$.
(b) The equation of the line is $5 y-15 x=13$.
$5 y-15 x=13$

$$
y=3 x+\frac{13}{5}
$$

This is of the form $y=m x+c$.
$\square$ Slope of the line $=3$
If a tangent is perpendicular to the line $5 y-15 x=13$, then the slope of the tangent is
$\frac{-1}{\text { slope of the line }}=\frac{-1}{3}$.
$\Rightarrow 2 x-2=\frac{-1}{3}$
$\Rightarrow 2 x=\frac{-1}{3}+2$
$\Rightarrow 2 x=\frac{5}{3}$
$\Rightarrow x=\frac{5}{6}$
Now, $x=\frac{5}{6}$
$\Rightarrow y=\frac{25}{36}-\frac{10}{6}+7=\frac{25-60+252}{36}=\frac{217}{36}$
Thus, the equation of the tangent passing through $\left(\frac{5}{6}, \frac{217}{36}\right)$ is given by,
$y-\frac{217}{36}=-\frac{1}{3}\left(x-\frac{5}{6}\right)$
$\Rightarrow \frac{36 y-217}{36}=\frac{-1}{18}(6 x-5)$
$\Rightarrow 36 y-217=-2(6 x-5)$
$\Rightarrow 36 y-217=-12 x+10$
$\Rightarrow 36 y+12 x-227=0$

Hence, the equation of the tangent line to the given curve (which is perpendicular to line $5 y-15 x=13)$ is $36 y+12 x-227=0$.

## Question 16:

Show that the tangents to the curve $y=7 x^{3}+11$ at the points where $x=2$ and $x=-2$ are parallel.
Answer
The equation of the given curve is $y=7 x^{3}+11$.
$\therefore \frac{d y}{d x}=21 x^{2}$
The slope of the tangent to a curve at $\left(x_{0}, y_{0}\right)$ is $\left.\frac{d y}{d x}\right]_{\left(x_{0}, y_{0}\right)}$.
Therefore, the slope of the tangent at the point where $x=2$ is given by,
$\left.\frac{d y}{d x}\right]_{x=-2}=21(2)^{2}=84$
It is observed that the slopes of the tangents at the points where $x=2$ and $x=-2$ are equal.
Hence, the two tangents are parallel.

## Question 17:

Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the $y$ coordinate of the point.
Answer
The equation of the given curve is $y=x^{3}$.
$\therefore \frac{d y}{d x}=3 x^{2}$
The slope of the tangent at the point $(x, y)$ is given by,
$\left.\frac{d y}{d x}\right]_{(x, y)}=3 x^{2}$
When the slope of the tangent is equal to the $y$-coordinate of the point, then $y=3 x^{2}$.
Also, we have $y=x^{3}$.
$\square 3 x^{2}=x^{3}$
$\square x^{2}(x-3)=0$
$\square x=0, x=3$
When $x=0$, then $y=0$ and when $x=3$, then $y=3(3)^{2}=27$.
Hence, the required points are $(0,0)$ and $(3,27)$.

Question 18: For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangents passes through the origin.

Answer
The equation of the given curve is $y=4 x^{3}-2 x^{5}$.
$\therefore \frac{d y}{d r}=12 x^{2}-10 x^{4}$
Therrefore, the slope of the tangent at a point $(x, y)$ is $12 x^{2}-10 x^{4}$.
The equation of the tangent at $(x, y)$ is given by,

Therefore, equation (1) reduces to:
$-y=\left(12 x^{2}-10 x^{4}\right)(-x)$
$y=12 x^{3}-10 x^{5}$
Also, we have

$$
y=4 x^{3}-2 x^{5}
$$

$\therefore 12 x^{3}-10 x^{5}=4 x^{3}-2 x^{5}$
$\Rightarrow 8 x^{5}-8 x^{3}=0$
$\Rightarrow x^{5}-x^{3}=0$
$\Rightarrow x^{3}\left(x^{2}-1\right)=0$
$\Rightarrow x=0, \pm 1$
When $x=0, y=4(0)^{3}-2(0)^{5}=0$.
When $x=1, y=4(1)^{3}-2(1)^{5}=2$.
When $x=-1, y=4(-1)^{3}-2(-1)^{5}=-2$.

Hence, the required points are $(0,0),(1,2)$, and $(-1,-2)$.

## Question 19:

Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the $x$-axis.

Answer
The equation of the given curve is $x^{2}+y^{2}-2 x-3=0$.
On differentiating with respect to $x$, we have:
$2 x+2 y \frac{d y}{d x}-2=0$
$\Rightarrow y \frac{d y}{d x}=1-x$
$\Rightarrow \frac{d y}{d x}=\frac{1-x}{y}$
Now, the tangents are parallel to the $x$-axis if the slope of the tangent is 0 .
$\therefore \frac{1-x}{y}=0 \Rightarrow 1-x=0 \Rightarrow x=1$
But, $x^{2}+y^{2}-2 x-3=0$ for $x=1$.
$\Rightarrow y^{2}=4 \square^{y= \pm 2}$
Hence, the points at which the tangents are parallel to the $x$-axis are $(1,2)$ and $(1,-2)$.

## Question 20:

Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$.
Answer
The equation of the given curve is $a y^{2}=x^{3}$.
On differentiating with respect to $x$, we have:
$2 a y \frac{d y}{d x}=3 x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{2 a y}$

The slope of a tangent to the curve at $\left(x_{0}, y_{0}\right)$ is $\left.\frac{d y}{d x}\right]_{\left(x_{0}, y_{0}\right)}$.
$\Rightarrow$ The slope of the tangent to the given curve at $\left(a m^{2}, a m^{3}\right)$ is
$\left.\frac{d y}{d x}\right]_{\left(a m^{2}, a m^{3}\right)}=\frac{3\left(a m^{2}\right)^{2}}{2 a\left(a m^{3}\right)}=\frac{3 a^{2} m^{4}}{2 a^{2} m^{3}}=\frac{3 m}{2}$.Slope of normal at $\left(a m^{2}, a m^{3}\right)$
$=\frac{-1}{\text { slope of the tangent at }\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)}=\frac{-2}{3 m}$
Hence, the equation of the normal at $\left(a m^{2}, a m^{3}\right)$ is given by,
$y-a m^{3}=\frac{-2}{3 m}\left(x-a m^{2}\right)$
$\Rightarrow 3 \mathrm{my}-3 \mathrm{am}^{4}=-2 x+2 \mathrm{am}^{2}$
$\Rightarrow 2 x+3 m y-a m^{2}\left(2+3 m^{2}\right)=0$

## Question 21:

Find the equation of the normals to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.
Answer
The equation of the given curve is $y=x^{3}+2 x+6$.
The slope of the tangent to the given curve at any point $(x, y)$ is given by,
$\frac{d y}{d x}=3 x^{2}+2$Slope of the normal to the given curve at any point $(x, y)$
$=\frac{-1}{\text { Slope of the tangent at the point }(x, y)}$
$=\frac{-1}{3 x^{2}+2}$
The equation of the given line is $x+14 y+4=0$.
$x+14 y+4=0 \square^{y=-\frac{1}{14} x-\frac{4}{14}}$ (which is of the form $y=m x+c$ )
$\square$ Slope of the given line $=\frac{-1}{14}$
If the normal is parallel to the line, then we must have the slope of the normal being equal to the slope of the line.
$\therefore \frac{-1}{3 x^{2}+2}=\frac{-1}{14}$
$\Rightarrow 3 x^{2}+2=14$
$\Rightarrow 3 x^{2}=12$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm 2$
When $x=2, y=8+4+6=18$.
When $x=-2, y=-8-4+6=-6$.
Therefore, there are two normals to the given curve with slope $\frac{-1}{14}$ and passing through the points $(2,18)$ and $(-2,-6)$.
Thus, the equation of the normal through $(2,18)$ is given by,
$y-18=\frac{-1}{14}(x-2)$
$\Rightarrow 14 y-252=-x+2$
$\Rightarrow x+14 y-254=0$
And, the equation of the normal through $(-2,-6)$ is given by,
$y-(-6)=\frac{-1}{14}[x-(-2)]$
$\Rightarrow y+6=\frac{-1}{14}(x+2)$
$\Rightarrow 14 y+84=-x-2$
$\Rightarrow x+14 y+86=0$
Hence, the equations of the normals to the given curve (which are parallel to the given line) are $x+14 y-254=0$ and $x+14 y+86=0$.

## Question 22:

Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}\right.$, 2at).
Answer
The equation of the given parabola is $y^{2}=4 a x$.
On differentiating $y^{2}=4 a x$ with respect to $x$, we have:
$2 y \frac{d y}{d x}=4 a$
$\Rightarrow \frac{d y}{d x}=\frac{2 a}{y}$
$\square$ The slope of the tangent at $\left.\left(a t^{2}, 2 a t\right)_{\text {is }} \frac{d y}{d x}\right]_{\left(a t^{2}, 2 a t\right)}=\frac{2 a}{2 a t}=\frac{1}{t}$.
Then, the equation of the tangent at $\left(a t^{2}, 2 a t\right)$ is given by,
$y-2 a t={ }^{\frac{1}{t}\left(x-a t^{2}\right)}$
$\Rightarrow t y-2 a t^{2}=x-a t^{2}$
$\Rightarrow t y=x+a t^{2}$
Now, the slope of the normal at $\left(a t^{2}, 2 a t\right)$ is given by,
$\frac{-1}{\text { Slope of the tangent at }\left(a t^{2}, 2 a t\right)}=-t$
Thus, the equation of the normal at $\left(a t^{2}, 2 a t\right)$ is given as:
$y-2 a t=-t\left(x-a t^{2}\right)$
$\Rightarrow y-2 a t=-t x+a t^{3}$
$\Rightarrow y=-t x+2 a t+a t^{3}$

## Question 23:

Prove that the curves $x=y^{2}$ and $x y=k$ cut at right angles if $8 k^{2}=1$. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]

Answer
The equations of the given curves are given as $x=y^{2}$ and $x y=k$.
Putting $x=y^{2}$ in $x y=k$, we get:
$y^{3}=k \Rightarrow y=k^{\frac{1}{3}}$
$\therefore x=k^{\frac{2}{3}}$
Thus, the point of intersection of the given curves is $\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right)$.
Differentiating $x=y^{2}$ with respect to $x$, we have:
$1=2 y \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$
Therefore, the slope of the tangent to the curve $x=y^{2}$ at $\left.\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right)_{\text {is }}^{\frac{d y}{d x}}\right]_{\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right.}=\frac{1}{2 k^{\frac{1}{3}}}$. On differentiating $x y=k$ with respect to $x$, we have:
$x \frac{d y}{d x}+y=0 \Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\square$ Slope of the tangent to the curve $x y=k$ at $\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right)_{\text {is given by, }}$
$\left.\left.\frac{d y}{d x}\right]_{\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right)}=\frac{-y}{x}\right]_{\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right.}=-\frac{k^{\frac{1}{3}}}{k^{\frac{2}{3}}}=\frac{-1}{k^{\frac{1}{3}}}$
We know that two curves intersect at right angles if the tangents to the curves at the
point of intersection i.e., at $\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right)$ are perpendicular to each other.
This implies that we should have the product of the tangents as -1 .
Thus, the given two curves cut at right angles if the product of the slopes of their
respective tangents at $\left(k^{\frac{2}{3}}, k^{\frac{1}{3}}\right)_{\text {is }-1 \text {. }}$
i.e., $\left(\frac{1}{2 k^{\frac{1}{3}}}\right)\left(\frac{-1}{k^{\frac{1}{3}}}\right)=-1$
$\Rightarrow 2 k^{\frac{2}{3}}=1$
$\Rightarrow\left(2 k^{\frac{2}{3}}\right)^{3}=(1)^{3}$
$\Rightarrow 8 k^{2}=1$
Hence, the given two curves cut at right angels if $8 k^{2}=1$.

## Question 24:

Find the equations of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$.

Answer
Differentiating $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with respect to $x$, we have:
$\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x}=0$
$\Rightarrow \frac{2 y}{b^{2}} \frac{d y}{d x}=\frac{2 x}{a^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}$
Therefore, the slope of the tangent at $\left.\left(x_{0}, y_{0}\right)_{\text {is }} \frac{d y}{d x}\right]_{\left(x_{0}, y_{0}\right)}=\frac{b^{2} x_{0}}{a^{2} y_{0}}$.
Then, the equation of the tangent at $\left(x_{0}, y_{0}\right)$ is given by,
$y-y_{0}=\frac{b^{2} x_{0}}{a^{2} y_{0}}\left(x-x_{0}\right)$
$\Rightarrow a^{2} y y_{0}-a^{2} y_{0}^{2}=b^{2} x x_{0}-b^{2} x_{0}^{2}$
$\Rightarrow b^{2} x x_{0}-a^{2} y y_{0}-b^{2} x_{0}^{2}+a^{2} y_{0}^{2}=0$
$\Rightarrow \frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}-\left(\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}}\right)=0$
[On dividing both sides by $\left.a^{2} b^{2}\right]$
$\Rightarrow \frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}-1=0$
$\left[\left(x_{0}, y_{0}\right)\right.$ lies on the hyperbola $\left.\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\right]$
$\Rightarrow \frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$
Now, the slope of the normal at $\left(x_{0}, y_{0}\right)$ is given by,
$\frac{-1}{\text { Slope of the tangent at }\left(x_{0}, y_{0}\right)}=\frac{-a^{2} y_{0}}{b^{2} x_{0}}$
Hence, the equation of the normal at $\left(x_{0}, y_{0}\right)$ is given by,
$y-y_{0}=\frac{-a^{2} y_{0}}{b^{2} x_{0}}\left(x-x_{0}\right)$
$\Rightarrow \frac{y-y_{0}}{a^{2} y_{0}}=\frac{-\left(x-x_{0}\right)}{b^{2} x_{0}}$
$\Rightarrow \frac{y-y_{0}}{a^{2} y_{0}}+\frac{\left(x-x_{0}\right)}{b^{2} x_{0}}=0$

## Question 25:

Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 x$ $-2 y+5=0$.
Answer
The equation of the given curve is $y=\sqrt{3 x-2}$.
The slope of the tangent to the given curve at any point $(x, y)$ is given by,
$\frac{d y}{d x}=\frac{3}{2 \sqrt{3 x-2}}$

The equation of the given line is $4 x-2 y+5=0$.
$4 x-2 y+5=0 \square^{y=2 x+\frac{5}{2}}$ (which is of the form $y=m x+c$ )
$\square$ Slope of the line $=2$
Now, the tangent to the given curve is parallel to the line $4 x-2 y-5=0$ if the slope of the tangent is equal to the slope of the line.
$\frac{3}{2 \sqrt{3 x-2}}=2$
$\Rightarrow \sqrt{3 x-2}=\frac{3}{4}$
$\Rightarrow 3 x-2=\frac{9}{16}$
$\Rightarrow 3 x=\frac{9}{16}+2=\frac{41}{16}$
$\Rightarrow x=\frac{41}{48}$
When $x=\frac{41}{48}, y=\sqrt{3\left(\frac{41}{48}\right)-2}=\sqrt{\frac{41}{16}-2}=\sqrt{\frac{41-32}{16}}=\sqrt{\frac{9}{16}}=\frac{3}{4}$.
$\square$ Equation of the tangent passing through the point $\left(\frac{41}{48}, \frac{3}{4}\right)$ is given by,
$y-\frac{3}{4}=2\left(x-\frac{41}{48}\right)$
$\Rightarrow \frac{4 y-3}{4}=2\left(\frac{48 x-41}{48}\right)$
$\Rightarrow 4 y-3=\frac{48 x-41}{6}$
$\Rightarrow 24 y-18=48 x-41$
$\Rightarrow 48 x-24 y=23$
Hence, the equation of the required tangent is $48 x-24 y=23$.

## Question 26:

The slope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is
(A) 3 (B


Answer
The equation of the given curve is $y=2 x^{2}+3 \sin x$.
Slope of the tangent to the given curve at $x=0$ is given by,
$\left.\left.\frac{d y}{d x}\right]_{x=0}=4 x+3 \cos x\right]_{x=0}=0+3 \cos 0=3$
Hence, the slope of the normal to the given curve at $x=0$ is
$\frac{-1}{\text { Slope of the tangent at } x=0}=\frac{-1}{3}$.
The correct answer is D.

## Question 27:

The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point
(A) $(1,2)$
(B) $(2,1)(C)(1,-2)$
(D) $(-1,2)$

Answer
The equation of the given curve is $y^{2}=4 x$.
Differentiating with respect to $x$, we have:
$2 y \frac{d y}{d x}=4 \Rightarrow \frac{d y}{d x}=\frac{2}{y}$
Therefore, the slope of the tangent to the given curve at any point $(x, y)$ is given by, $\frac{d y}{d x}=\frac{2}{y}$
The given line is $y=x+1$ (which is of the form $y=m x+c$ )Slope of the line $=1$
The line $y=x+1$ is a tangent to the given curve if the slope of the line is equal to the slope of the tangent. Also, the line must intersect the curve.
Thus, we must have:
$\frac{2}{y}=1$
$\Rightarrow y=2$
Now, $y=x+1 \Rightarrow x=y-1 \Rightarrow x=2-1=1$
Hence, the line $y=x+1$ is a tangent to the given curve at the point $(1,2)$.
The correct answer is $A$.

