Exercise 10.2

Question 1:

Compute the magnitude of the following vectors:
$\vec{a}=\hat{i}+\hat{j}+\hat{k} ; \quad \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k} ; \quad \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

Answer

The given vectors are:

$$
\begin{aligned}
\vec{a} & =\hat{i}+\hat{j}+\hat{k} ; \quad \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k} ; \quad \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k} \\
|\vec{a}| & =\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}=\sqrt{3} \\
|\vec{b}| & =\sqrt{(2)^{2}+(-7)^{2}+(-3)^{2}} \\
& =\sqrt{4+49+9} \\
& =\sqrt{62} \\
|\vec{c}| & =\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}} \\
& =\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=1
\end{aligned}
$$

Question 2:

Write two different vectors having same magnitude.
Answer
Consider $\vec{a}=(\hat{i}-2 \hat{j}+3 \hat{k})$ and $\vec{b}=(2 \hat{i}+\hat{j}-3 \hat{k})$.
It can be observed that $|\vec{a}|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$ and
$|\vec{b}|=\sqrt{2^{2}+1^{2}+(-3)^{2}}=\sqrt{4+1+9}=\sqrt{14}$.
Hence, \vec{a} and \vec{b} are two different vectors having the same magnitude. The vectors are different because they have different directions.

Question 3:

Write two different vectors having same direction.
Answer
Consider $\vec{p}=(\hat{i}+\hat{j}+\hat{k})$ and $\vec{q}=(2 \hat{i}+2 \hat{j}+2 \hat{k})$.
The direction cosines of \vec{p} are given by,
$l=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}, m=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}$, and $n=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}$.
The direction cosines of \vec{q} are given by
$l=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}, m=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$,
and $n=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$.
The direction cosines of \vec{p} and \vec{q} are the same. Hence, the two vectors have the same direction.

Question 4:

Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal
Answer
The two vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ will be equal if their corresponding components are equal.

Hence, the required values of x and y are 2 and 3 respectively.

Question 5:

Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point ($-5,7$).
Answer
The vector with the initial point $P(2,1)$ and terminal point $Q(-5,7)$ can be given by,
$\overrightarrow{\mathrm{PQ}}=(-5-2) \hat{i}+(7-1) \hat{j}$
$\Rightarrow \overrightarrow{\mathrm{PQ}}=-7 \hat{i}+6 \hat{j}$
Hence, the required scalar components are -7 and 6 while the vector components are $-7 \hat{i}$ and $6 \hat{j}$.

Question 6:

Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$.
Answer
The given vectors are $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$.

$$
\begin{aligned}
\therefore \vec{a}+\vec{b}+\vec{c} & =(1-2+1) \hat{i}+(-2+4-6) \hat{j}+(1+5-7) \hat{k} \\
& =0 \cdot \hat{i}-4 \hat{j}-1 \cdot \hat{k} \\
& =-4 \hat{j}-\hat{k}
\end{aligned}
$$

Question 7:

Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$.
Answer

The unit vector \hat{a} in the direction of vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ is given by $\hat{a}=\frac{\vec{a}}{|a|}$.
$|\vec{a}|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}$
$\therefore \hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{i}+\hat{j}+2 \hat{k}}{\sqrt{6}}=\frac{1}{\sqrt{6}} \hat{i}+\frac{1}{\sqrt{6}} \hat{j}+\frac{2}{\sqrt{6}} \hat{k}$

Question 8:

Find the unit vector in the direction of vector $\overrightarrow{P Q}$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.
Answer
The given points are $P(1,2,3)$ and $Q(4,5,6)$.

$$
\begin{aligned}
& \therefore \overrightarrow{\mathrm{PQ}}=(4-1) \hat{i}+(5-2) \hat{j}+(6-3) \hat{k}=3 \hat{i}+3 \hat{j}+3 \hat{k} \\
& |\overrightarrow{\mathrm{PQ}}|=\sqrt{3^{2}+3^{2}+3^{2}}=\sqrt{9+9+9}=\sqrt{27}=3 \sqrt{3}
\end{aligned}
$$

Hence, the unit vector in the direction of $\overrightarrow{P Q}$ is

$$
\frac{\overrightarrow{\mathrm{PQ}}}{|\overrightarrow{\mathrm{PQ}}|}=\frac{3 \hat{i}+3 \hat{j}+3 \hat{k}}{3 \sqrt{3}}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}
$$

Question 9:

For given vectors, $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction
of the vector $\vec{a}+\vec{b}$
Answer
The given vectors are $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$.
$\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$
$\vec{b}=-\hat{i}+\hat{j}-\hat{k}$
$\therefore \vec{a}+\vec{b}=(2-1) \hat{i}+(-1+1) \hat{j}+(2-1) \hat{k}=1 \hat{i}+0 \hat{j}+1 \hat{k}=\hat{i}+\hat{k}$
$|\vec{a}+\vec{b}|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

Hence, the unit vector in the direction of $(\vec{a}+\vec{b})$ is
$\frac{(\vec{a}+\vec{b})}{|\vec{a}+\vec{b}|}=\frac{\hat{i}+\hat{k}}{\sqrt{2}}=\frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}$

Question 10:

Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.
Answer
Let $\vec{a}=5 \hat{i}-\hat{j}+2 \hat{k}$.
$\therefore|\vec{a}|=\sqrt{5^{2}+(-1)^{2}+2^{2}}=\sqrt{25+1+4}=\sqrt{30}$
$\therefore \hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{5 \hat{i}-\hat{j}+2 \hat{k}}{\sqrt{30}}$
Hence, the vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units is given by,
$8 \hat{a}=8\left(\frac{5 \hat{i}-\hat{j}+2 \hat{k}}{\sqrt{30}}\right)=\frac{40}{\sqrt{30}} \hat{i}-\frac{8}{\sqrt{30}} \hat{j}+\frac{16}{\sqrt{30}} \hat{k}$
$=8\left(\frac{5 \vec{i}-\vec{j}+2 \vec{k}}{\sqrt{30}}\right)$
$=\frac{40}{\sqrt{30}} \vec{i}-\frac{8}{\sqrt{30}} \vec{j}+\frac{16}{\sqrt{30}} \vec{k}$

Question 11:

Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.
Answer
Let $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=-4 \hat{i}+6 \hat{j}-8 \hat{k}$.
It is observed that $\vec{b}=-4 \hat{i}+6 \hat{j}-8 \hat{k}=-2(2 \hat{i}-3 \hat{j}+4 \hat{k})=-2 \vec{a}$
$\therefore \vec{b}=\lambda \vec{a}$
where,
$\lambda=-2$
Hence, the given vectors are collinear.

Question 12:

Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$
Answer
Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$.
$\therefore|\vec{a}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$

Hence, the direction cosines of \vec{a} are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$.

Question 13:

Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,1)$ directed from A to B.
Answer
The given points are $A(1,2,-3)$ and $B(-1,-2,1)$.
$\therefore \overrightarrow{\mathrm{AB}}=(-1-1) \hat{i}+(-2-2) \hat{j}+\{1-(-3)\} \hat{k}$
$\Rightarrow \overrightarrow{\mathrm{AB}}=-2 \hat{i}-4 \hat{j}+4 \hat{k}$
$\therefore|\overrightarrow{\mathrm{AB}}|=\sqrt{(-2)^{2}+(-4)^{2}+4^{2}}=\sqrt{4+16+16}=\sqrt{36}=6$

Hence, the direction cosines of $\overrightarrow{\mathrm{AB}}$ are $\left(-\frac{2}{6},-\frac{4}{6}, \frac{4}{6}\right)=\left(-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)$.

Question 14:

Show that vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes $O X, O Y$, and $O Z$.
Answer
Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$.
Then,
$|\vec{a}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$
Therefore, the direction cosines of \vec{a} are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Now, let a, β, and γ be the angles formed by \vec{a} with the positive directions of x, y, and z axes.

Then, we have $\cos \alpha=\frac{1}{\sqrt{3}}, \cos \beta=\frac{1}{\sqrt{3}}, \cos \gamma=\frac{1}{\sqrt{3}}$.
Hence, the given vector is equally inclined to axes OX, OY, and OZ.

Question 15:

Find the position vector of a point R which divides the line joining two points P and Q
whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ration $2: 1$
(i) internally
(ii) externally

Answer
The position vector of point R dividing the line segment joining two points P and Q in the ratio m : n is given by:
i. Internally:

```
\(\frac{m \vec{b}+n \vec{a}}{m+n}\)
    ii. Externally:
\(\frac{m \vec{b}-n \vec{a}}{m-n}\)
```

Position vectors of P and Q are given as:
$\overrightarrow{\mathrm{OP}}=\hat{i}+2 \hat{j}-\hat{k}$ and $\overrightarrow{\mathrm{OQ}}=-\hat{i}+\hat{j}+\hat{k}$
(i) The position vector of point R which divides the line joining two points P and Q internally in the ratio $2: 1$ is given by,

$$
\begin{aligned}
\overrightarrow{\mathrm{OR}} & =\frac{2(-\hat{i}+\hat{j}+\hat{k})+1(\hat{i}+2 \hat{j}-\hat{k})}{2+1}=\frac{(-2 \hat{i}+2 \hat{j}+2 \hat{k})+(\hat{i}+2 \hat{j}-\hat{k})}{3} \\
& =\frac{-\hat{i}+4 \hat{j}+\hat{k}}{3}=-\frac{1}{3} \hat{i}+\frac{4}{3} \hat{j}+\frac{1}{3} \hat{k}
\end{aligned}
$$

(ii) The position vector of point R which divides the line joining two points P and Q externally in the ratio $2: 1$ is given by,

$$
\begin{aligned}
\overrightarrow{\mathrm{OR}} & =\frac{2(-\hat{i}+\hat{j}+\hat{k})-1(\hat{i}+2 \hat{j}-\hat{k})}{2-1}=(-2 \hat{i}+2 \hat{j}+2 \hat{k})-(\hat{i}+2 \hat{j}-\hat{k}) \\
& =-3 \hat{i}+3 \hat{k}
\end{aligned}
$$

Question 16:

Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and Q (4, 1, - 2).

Answer
The position vector of mid-point R of the vector joining points $P(2,3,4)$ and $Q(4,1$, 2) is given by,

$$
\begin{aligned}
\overrightarrow{\mathrm{OR}} & =\frac{(2 \hat{i}+3 \hat{j}+4 \hat{k})+(4 \hat{i}+\hat{j}-2 \hat{k})}{2}=\frac{(2+4) \hat{i}+(3+1) \hat{j}+(4-2) \hat{k}}{2} \\
& =\frac{6 \hat{i}+4 \hat{j}+2 \hat{k}}{2}=3 \hat{i}+2 \hat{j}+\hat{k}
\end{aligned}
$$

Question 17:

Show that the points A, B and C with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}$,
$\vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$, respectively form the vertices of a right angled triangle.
Answer
Position vectors of points A, B, and C are respectively given as:
$\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$
$\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}}=\vec{b}-\vec{a}=(2-3) \hat{i}+(-1+4) \hat{j}+(1+4) \hat{k}=-\hat{i}+3 \hat{j}+5 \hat{k}$
$\overrightarrow{\mathrm{BC}}=\vec{c}-\vec{b}=(1-2) \hat{i}+(-3+1) \hat{j}+(-5-1) \hat{k}=-\hat{i}-2 \hat{j}-6 \hat{k}$
$\overrightarrow{\mathrm{CA}}=\vec{a}-\vec{c}=(3-1) \hat{i}+(-4+3) \hat{j}+(-4+5) \hat{k}=2 \hat{i}-\hat{j}+\hat{k}$
$\therefore|\overrightarrow{\mathrm{AB}}|^{2}=(-1)^{2}+3^{2}+5^{2}=1+9+25=35$
$|\overrightarrow{\mathrm{BC}}|^{2}=(-1)^{2}+(-2)^{2}+(-6)^{2}=1+4+36=41$
$|\overrightarrow{\mathrm{CA}}|^{2}=2^{2}+(-1)^{2}+1^{2}=4+1+1=6$
$\therefore|\overrightarrow{\mathrm{AB}}|^{2}+|\overrightarrow{\mathrm{CA}}|^{2}=36+6=41=|\overrightarrow{\mathrm{BC}}|^{2}$
Hence, $A B C$ is a right-angled triangle.

Question 18:

In triangle $A B C$ which of the following is not true:

A. $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
B. $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0}$
C. $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
D. $\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$

Answer

On applying the triangle law of addition in the given triangle, we have:
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CA}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
\therefore The equation given in alternative A is true.
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0}$
\therefore The equation given in alternative B is true.
From equation (2), we have:
$\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
\therefore The equation given in alternative D is true.
Now, consider the equation given in alternative C :
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{CA}}$
From equations (1) and (3), we have:
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{CA}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=-\overrightarrow{\mathrm{AC}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AC}}=\overrightarrow{0}$
$\Rightarrow 2 \overrightarrow{\mathrm{AC}}=\overrightarrow{0}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{0}$, which is not true.
Hence, the equation given in alternative C is incorrect.
The correct answer is \mathbf{C}.

Question 19:

If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect:
A. $\vec{b}=\lambda \vec{a}$, for some scalar λ
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are proportional
D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes

Answer
If \vec{a} and \vec{b} are two collinear vectors, then they are parallel.
Therefore, we have:
$\vec{b}=\lambda \vec{a}$ (For some scalar λ)
If $\lambda= \pm 1$, then $\vec{a}= \pm \vec{b}$.
If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then
$\vec{b}=\lambda \vec{a}$.
$\Rightarrow b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}=\lambda\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)$
$\Rightarrow b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}=\left(\lambda a_{1}\right) \hat{i}+\left(\lambda a_{2}\right) \hat{j}+\left(\lambda a_{3}\right) \hat{k}$
$\Rightarrow b_{1}=\lambda a_{1}, b_{2}=\lambda a_{2}, b_{3}=\lambda a_{3}$
$\Rightarrow \frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}=\lambda$

Thus, the respective components of \vec{a} and \vec{b} are proportional.
However, vectors \vec{a} and \vec{b} can have different directions.
Hence, the statement given in \mathbf{D} is incorrect.
The correct answer is \mathbf{D}.

