Question 1:

If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with x, y and z-axes respectively, find its direction cosines.

Answer

Let direction cosines of the line be I, m, and n.
$l=\cos 90^{\circ}=0$
$m=\cos 135^{\circ}=-\frac{1}{\sqrt{2}}$
$n=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$

Therefore, the direction cosines of the line are $0,-\frac{1}{\sqrt{2}}$, and $\frac{1}{\sqrt{2}}$.

Question 2:

Find the direction cosines of a line which makes equal angles with the coordinate axes.
Answer
Let the direction cosines of the line make an angle a with each of the coordinate axes.
$\therefore I=\cos a, m=\cos a, n=\cos a$
$l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1$
$\Rightarrow 3 \cos ^{2} \alpha=1$
$\Rightarrow \cos ^{2} \alpha=\frac{1}{3}$
$\Rightarrow \cos \alpha= \pm \frac{1}{\sqrt{3}}$

Thus, the direction cosines of the line, which is equally inclined to the coordinate axes,
are $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$, and $\pm \frac{1}{\sqrt{3}}$.

Question 3:

If a line has the direction ratios $-18,12,-4$, then what are its direction cosines?
Answer
If a line has direction ratios of $-18,12$, and -4 , then its direction cosines are
$\frac{-18}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}, \frac{12}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}, \frac{-4}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}$
i.e., $\frac{-18}{22}, \frac{12}{22}, \frac{-4}{22}$
$\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$

Thus, the direction cosines are $-\frac{9}{11}, \frac{6}{11}$, and $\frac{-2}{11}$.

Question 4:

Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

Answer

The given points are $A(2,3,4), B(-1,-2,1)$, and $C(5,8,7)$.
It is known that the direction ratios of line joining the points, $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$, are given by, $x_{2}-x_{1}, y_{2}-y_{1}$, and $z_{2}-z_{1}$.

The direction ratios of $A B$ are $(-1-2),(-2-3)$, and (1-4) i.e., $-3,-5$, and -3 . The direction ratios of $B C$ are $(5-(-1)),(8-(-2))$, and $(7-1)$ i.e., 6,10 , and 6. It can be seen that the direction ratios of $B C$ are -2 times that of $A B$ i.e., they are proportional.

Therefore, $A B$ is parallel to $B C$. Since point B is common to both $A B$ and $B C$, points A, B, and C are collinear.

Question 5:

Find the direction cosines of the sides of the triangle whose vertices are (3,5, -4), ($1,1,2$) and ($-5,-5,-2$)

Answer

The vertices of $\triangle A B C$ are $A(3,5,-4), B(-1,1,2)$, and $C(-5,-5,-2)$.

The direction ratios of side $A B$ are $(-1-3),(1-5)$, and $(2-(-4))$ i.e., $-4,-4$, and 6 .

$$
\text { Then, } \begin{aligned}
\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}} & =\sqrt{16+16+36} \\
& =\sqrt{68} \\
& =2 \sqrt{17}
\end{aligned}
$$

Therefore, the direction cosines of $A B$ are
$\frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}, \frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}, \frac{6}{\sqrt{(-4)^{2}+(-4)^{2}+(6)^{2}}}$
$\frac{-4}{2 \sqrt{17}},-\frac{4}{2 \sqrt{17}}, \frac{6}{2 \sqrt{17}}$
$\frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}$
The direction ratios of BC are $(-5-(-1)),(-5-1)$, and $(-2-2)$ i.e., $-4,-6$, and -4 . Therefore, the direction cosines of BC are

$$
\begin{array}{ll}
& \frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}, \frac{-6}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}, \frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}} \\
& \frac{-4}{2 \sqrt{17}}, \frac{-6}{2 \sqrt{17}}, \frac{-4}{2 \sqrt{17}}
\end{array}
$$

The direction ratios of CA are $(-5-3),(-5-5)$, and $(-2-(-4))$ i.e., $-8,-$ Therefore, the direction cosines of $A C$ are

$$
\begin{aligned}
& \frac{-8}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}}, \frac{-5}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}}, \frac{2}{\sqrt{(-8)^{2}+(10)^{2}+(2)^{2}}} \\
& \text { i.i.e.t } \frac{-8}{2 \sqrt{42}}, \frac{-10}{2 \sqrt{42}}, \frac{2}{2 \sqrt{42}}
\end{aligned}
$$

```
IOP GUPTA
2013-11-07 11:46:23
```

:------

