Exercise 11.2

Question 1:

Show that the three lines with direction cosines

$$
\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13} ; \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13} \text { are mutually perpendicular. }
$$

Answer

Two lines with direction cosines, I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2}, are perpendicular to each other, if $I_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
(i) For the lines with direction cosines, $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$ and $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$, we obtain

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\frac{12}{13} \times \frac{4}{13}+\left(\frac{-3}{13}\right) \times \frac{12}{13}+\left(\frac{-4}{13}\right) \times \frac{3}{13} \\
& =\frac{48}{169}-\frac{36}{169}-\frac{12}{169} \\
& =0
\end{aligned}
$$

Therefore, the lines are perpendicular.
(ii) For the lines with direction cosines, $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$ and $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$, we obtain

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\frac{4}{13} \times \frac{3}{13}+\frac{12}{13} \times\left(\frac{-4}{13}\right)+\frac{3}{13} \times \frac{12}{13} \\
& =\frac{12}{169}-\frac{48}{169}+\frac{36}{169} \\
& =0
\end{aligned}
$$

Therefore, the lines are perpendicular.
(iii) For the lines with direction cosines, $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ and $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$, we obtain

$$
\begin{aligned}
l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & =\left(\frac{3}{13}\right) \times\left(\frac{12}{13}\right)+\left(\frac{-4}{13}\right) \times\left(\frac{-3}{13}\right)+\left(\frac{12}{13}\right) \times\left(\frac{-4}{13}\right) \\
& =\frac{36}{169}+\frac{12}{169}-\frac{48}{169} \\
& =0
\end{aligned}
$$

Therefore, the lines are perpendicular.
Thus, all the lines are mutually perpendicular.

Question 2:

Show that the line through the points $(1,-1,2)(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.
Answer
Let $A B$ be the line joining the points, $(1,-1,2)$ and $(3,4,-2)$, and $C D$ be the line joining the points, $(0,3,2)$ and ($3,5,6$).
The direction ratios, a_{1}, b_{1}, c_{1}, of $A B$ are ($3-1$), $(4-(-1))$, and ($-2-2$) i.e., 2,5 , and -4 .

The direction ratios, a_{2}, b_{2}, c_{2}, of CD are (3-0), (5-3), and (6-2) i.e., 3,2 , and 4. AB and CD will be perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 3+5 \times 2+(-4) \times 4$
$=6+10-16$
$=0$
Therefore, $A B$ and $C D$ are perpendicular to each other.

Question 3:

Show that the line through the points $(4,7,8)(2,3,4)$ is parallel to the line through the points ($-1,-2,1$), ($1,2,5$).

Answer

Let $A B$ be the line through the points, $(4,7,8)$ and $(2,3,4)$, and $C D$ be the line through the points, $(-1,-2,1)$ and $(1,2,5)$.

The directions ratios, a_{1}, b_{1}, c_{1}, of AB are $(2-4),(3-7)$, and $(4-8)$ i.e., $-2,-4$, and -4.

The direction ratios, a_{2}, b_{2}, c_{2}, of CD are (1-(-1)), (2-(-2)), and (5-1) i.e., 2, 4, and 4.

AB will be parallel to CD , if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{a_{1}}{a_{2}}=\frac{-2}{2}=-1$
$\frac{b_{1}}{b_{2}}=\frac{-4}{4}=-1$
$\frac{c_{1}}{c_{2}}=\frac{-4}{4}=-1$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Thus, $A B$ is parallel to $C D$.

Question 4:

Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.
Answer
It is given that the line passes through the point $A(1,2,3)$. Therefore, the position vector through A is $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$
$\vec{b}=3 \hat{i}+2 \hat{j}-2 \hat{k}$
It is known that the line which passes through point A and parallel to \vec{b} is given by
$\vec{r}=\vec{a}+\lambda \vec{b}$, where λ is a constant.
$\Rightarrow \vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k})$
This is the required equation of the line.

Question 5:

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.
Answer
It is given that the line passes through the point with position vector
$\vec{a}=2 \hat{i}-\hat{j}+4 \hat{k}$
$\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$

It is known that a line through a point with position vector \vec{a} and parallel to \vec{b} is given by the equation, $\vec{r}=\vec{a}+\lambda \vec{b}$
$\Rightarrow \vec{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(\hat{i}+2 \hat{j}-\hat{k})$
This is the required equation of the line in vector form.
$\vec{r}=x \hat{i}-y \hat{j}+z \hat{k}$
$\Rightarrow x \hat{i}-y \hat{j}+z \hat{k}=(\lambda+2) \hat{i}+(2 \lambda-1) \hat{j}+(-\lambda+4) \hat{k}$
Eliminating λ, we obtain the Cartesian form equation as
$\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}$
This is the required equation of the given line in Cartesian form.

Question 6:

Find the Cartesian equation of the line which passes through the point
$(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
Answer
It is given that the line passes through the point $(-2,4,-5)$ and is parallel to
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$

The direction ratios of the line, $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$, are 3,5 , and 6.
The required line is parallel to $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
Therefore, its direction ratios are $3 k, 5 k$, and $6 k$, where $k \neq 0$
It is known that the equation of the line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and with direction
ratios, a, b, c, is given by $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

Therefore the equation of the required line is
$\frac{x+2}{3 k}=\frac{y-4}{5 k}=\frac{z+5}{6 k}$
$\Rightarrow \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}=k$

Question 7:

The Cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.
Answer
The Cartesian equation of the line is
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
The given line passes through the point $(5,-4,6)$. The position vector of this point is
$\vec{a}=5 \hat{i}-4 \hat{j}+6 \hat{k}$
Also, the direction ratios of the given line are 3, 7, and 2 .
This means that the line is in the direction of vector, $\vec{b}=3 \hat{i}+7 \hat{j}+2 \hat{k}$
It is known that the line through position vector \vec{a} and in the direction of the vector \vec{b} is given by the equation, $\vec{r}=\vec{a}+\lambda \vec{b}, \lambda \in R$
$\Rightarrow \vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})$
This is the required equation of the given line in vector form.

Question 8:

Find the vector and the Cartesian equations of the lines that pass through the origin and (5, -2, 3).
Answer
The required line passes through the origin. Therefore, its position vector is given by,
$\vec{a}=\overrightarrow{0}$
The direction ratios of the line through origin and $(5,-2,3)$ are
$(5-0)=5,(-2-0)=-2,(3-0)=3$

The line is parallel to vector given by the equation, $\vec{b}=5 \hat{i}-2 \hat{j}+3 \hat{k}$
The equation of the line in vector form through a point with position vector \vec{a} and parallel
to \vec{b} is, $\vec{r}=\vec{a}+\lambda \vec{b}, \lambda \in R$
$\Rightarrow \vec{r}=\overrightarrow{0}+\lambda(5 \hat{i}-2 \hat{j}+3 \hat{k})$
$\Rightarrow \vec{r}=\lambda(5 \hat{i}-2 \hat{j}+3 \hat{k})$
The equation of the line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and direction ratios a, b, c is given
by, $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Therefore, the equation of the required line in the Cartesian form is
$\frac{x-0}{5}=\frac{y-0}{-2}=\frac{z-0}{3}$
$\Rightarrow \frac{x}{5}=\frac{y}{-2}=\frac{z}{3}$

Question 9:

Find the vector and the Cartesian equations of the line that passes through the points (3, $-2,-5),(3,-2,6)$.

Answer
Let the line passing through the points, $P(3,-2,-5)$ and $Q(3,-2,6)$, be $P Q$.
Since $P Q$ passes through $P(3,-2,-5)$, its position vector is given by,
$\vec{a}=3 \hat{i}-2 \hat{j}-5 \hat{k}$
The direction ratios of $P Q$ are given by,
$(3-3)=0,(-2+2)=0,(6+5)=11$
The equation of the vector in the direction of $P Q$ is
$\vec{b}=0 . \hat{i}-0 . \hat{j}+11 \hat{k}=11 \hat{k}$

The equation of PQ in vector form is given by, $\vec{r}=\vec{a}+\lambda \vec{b}, \lambda \in R$
$\Rightarrow \vec{r}=(3 \hat{i}-2 \hat{j}-5 \hat{k})+11 \lambda \hat{k}$
The equation of $P Q$ in Cartesian form is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ i.e., $\quad \frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}$

Question 10:

Find the angle between the following pairs of lines:
(i) $\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k})$ and
$\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$
(ii) $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$
Answer
(i) Let Q be the angle between the given lines.

The angle between the given pairs of lines is given by, $\cos Q=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|$

The given lines are parallel to the vectors, $\vec{b}_{1}=3 \hat{i}+2 \hat{j}+6 \hat{k}$ and $\vec{b}_{2}=\hat{i}+2 \hat{j}+2 \hat{k}$, respectively.

$$
\begin{aligned}
& \therefore\left|\vec{b}_{1}\right|=\sqrt{3^{2}+2^{2}+6^{2}}=7 \\
& \begin{aligned}
\left|\vec{b}_{2}\right|= & \sqrt{(1)^{2}+(2)^{2}+(2)^{2}}=3 \\
\vec{b}_{1} \cdot \vec{b}_{2} & =(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& =3 \times 1+2 \times 2+6 \times 2 \\
& =3+4+12 \\
& =19
\end{aligned}
\end{aligned}
$$

$\Rightarrow \cos Q=\frac{19}{7 \times 3}$
$\Rightarrow Q=\cos ^{-1}\left(\frac{19}{21}\right)$
(ii) The given lines are parallel to the vectors, $\vec{b}_{1}=\hat{i}-\hat{j}-2 \hat{k}$ and $\vec{b}_{2}=3 \hat{i}-5 \hat{j}-4 \hat{k}$, respectively.

$$
\begin{aligned}
& \therefore\left|\vec{b}_{1}\right|=\sqrt{(1)^{2}+(-1)^{2}+(-2)^{2}}=\sqrt{6} \\
& \left|\vec{b}_{2}\right|= \\
& \begin{aligned}
\vec{b}_{1} \cdot \vec{b}_{2} & =(\hat{i}-\hat{j}-2 \hat{k}) \cdot(3 \hat{i}-5 \hat{j}-4 \hat{k}) \\
& =1 \cdot 3-1(-5)-2(-4) \\
& =3+5+8 \\
& =16
\end{aligned}
\end{aligned}
$$

$\cos Q=\left|\begin{array}{l}\vec{b}_{1} \cdot \vec{b}_{2} \\ \left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|\end{array}\right|$
$\Rightarrow \cos Q=\frac{16}{\sqrt{6} \cdot 5 \sqrt{2}}=\frac{16}{\sqrt{2} \cdot \sqrt{3} \cdot 5 \sqrt{2}}=\frac{16}{10 \sqrt{3}}$
$\Rightarrow \cos Q=\frac{8}{5 \sqrt{3}}$
$\Rightarrow Q=\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right)$

Question 11:

Find the angle between the following pairs of lines:
(i) $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Answer

Let \vec{b}_{1} and \vec{b}_{2} be the vectors parallel to the pair of lines,

$$
\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \text { and } \frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}, \text { respectively. }
$$

$$
\therefore \vec{b}_{1}=2 \hat{i}+5 \hat{j}-3 \hat{k} \text { and } \vec{b}_{2}=-\hat{i}+8 \hat{j}+4 \hat{k}
$$

$$
\left|\vec{b}_{1}\right|=\sqrt{(2)^{2}+(5)^{2}+(-3)^{2}}=\sqrt{38}
$$

$$
\left|\vec{b}_{2}\right|=\sqrt{(-1)^{2}+(8)^{2}+(4)^{2}}=\sqrt{81}=9
$$

$$
\vec{b}_{1} \cdot \vec{b}_{2}=(2 \hat{i}+5 \hat{j}-3 \hat{k}) \cdot(-\hat{i}+8 \hat{j}+4 \hat{k})
$$

$$
=2(-1)+5 \times 8+(-3) \cdot 4
$$

$$
=-2+40-12
$$

$$
=26
$$

The angle, Q , between the given pair of lines is given by the relation,
$\cos Q=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|$
$\Rightarrow \cos Q=\frac{26}{9 \sqrt{38}}$
$\Rightarrow Q=\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)$
(ii) Let \vec{b}_{1}, \vec{b}_{2} be the vectors parallel to the given pair of lines, $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-5}{1}=\frac{z-3}{8}$, respectively.

$$
\begin{aligned}
& \vec{b}_{1}=2 \hat{i}+2 \hat{j}+\hat{k} \\
& \vec{b}_{2}=4 \hat{i}+\hat{j}+8 \hat{k} \\
& \begin{aligned}
\therefore\left|\vec{b}_{1}\right| & =\sqrt{(2)^{2}+(2)^{2}+(1)^{2}}=\sqrt{9}=3 \\
\left|\vec{b}_{2}\right|= & \sqrt{4^{2}+1^{2}+8^{2}}=\sqrt{81}=9 \\
\vec{b}_{1} \cdot \vec{b}_{2} & =(2 \hat{i}+2 \hat{j}+\hat{k}) \cdot(4 \hat{i}+\hat{j}+8 \hat{k}) \\
& =2 \times 4+2 \times 1+1 \times 8 \\
& =8+2+8 \\
& =18
\end{aligned}
\end{aligned}
$$

If Q is the angle between the given pair of lines, then $\cos Q=\left\lvert\, \begin{aligned} & \vec{b}_{1} \cdot \vec{b}_{2} \\ & \left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|\end{aligned}\right.$
$\Rightarrow \cos Q=\frac{18}{3 \times 9}=\frac{2}{3}$
$\Rightarrow Q=\cos ^{-1}\left(\frac{2}{3}\right)$

Question 12:

Find the values of p so the line $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

Answer
The given equations can be written in the standard form as

$$
\frac{x-1}{-3}=\frac{y-2}{\frac{2 p}{7}}=\frac{z-3}{2} \text { and } \frac{x-1}{\frac{-3 p}{7}}=\frac{y-5}{1}=\frac{z-6}{-5}
$$

The direction ratios of the lines are $-3, \frac{2 p}{7}, 2$ and $\frac{-3 p}{7}, 1,-5$ respectively.
Two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}, are perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore(-3) \cdot\left(\frac{-3 p}{7}\right)+\left(\frac{2 p}{7}\right) \cdot(1)+2 \cdot(-5)=0$
$\Rightarrow \frac{9 p}{7}+\frac{2 p}{7}=10$
$\Rightarrow 11 p=70$
$\Rightarrow p=\frac{70}{11}$

Thus, the value of p is $\frac{70}{11}$.

Question 13:

Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
Answer
The equations of the given lines are $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
The direction ratios of the given lines are $7,-5,1$ and $1,2,3$ respectively.
Two lines with direction ratios, a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2}, are perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\therefore 7 \times 1+(-5) \times 2+1 \times 3$
$=7-10+3$
$=0$
Therefore, the given lines are perpendicular to each other.

Question 14:

Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and
$\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$

Answer
The equations of the given lines are

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
& \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

It is known that the shortest distance between the lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, is given by,
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Comparing the given equations, we obtain

$$
\begin{aligned}
& \vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k} \\
& \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k} \\
& \vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k} \\
& \vec{b}_{2}=2 \hat{i}+\hat{j}+2 \hat{k} \\
& \vec{a}_{2}-\vec{a}_{1}=(2 \hat{i}-\hat{j}-\hat{k})-(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-3 \hat{j}-2 \hat{k} \\
& \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{|cr}
\hat{i} & \hat{j} \\
1 & -1
\end{array}\right| \begin{array}{l}
\hat{k} \\
2
\end{array} 1 \\
& \vec{b}_{1} \times \vec{b}_{2}=(-2-1) \hat{i}-(2-2) \hat{j}+(1+2) \hat{k}=-3 \hat{i}+3 \hat{k} \\
& \Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(-3)^{2}+(3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Substituting all the values in equation (1), we obtain
$d=\left|\frac{(-3 \hat{i}+3 \hat{k}) \cdot(\hat{i}-3 \hat{j}-2 \hat{k})}{3 \sqrt{2}}\right|$
$\Rightarrow d=\left|\frac{-3.1+3(-2)}{3 \sqrt{2}}\right|$
$\Rightarrow d=\left|\frac{-9}{3 \sqrt{2}}\right|$
$\Rightarrow d=\frac{3}{\sqrt{2}}=\frac{3 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}=\frac{3 \sqrt{2}}{2}$
Therefore, the shortest distance between the two lines is $\frac{3 \sqrt{2}}{2}$ units.

Question 15:

Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ Answer

The given lines are $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
It is known that the shortest distance between the two lines,
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$, is given by,
$d=\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}$
Comparing the given equations, we obtain

$$
\begin{aligned}
& x_{1}=-1, y_{1}=-1, z_{1}=-1 \\
& a_{1}=7, \quad b_{1}=-6, c_{1}=1 \\
& x_{2}=3, y_{2}=5, z_{2}=7 \\
& a_{2}=1, \quad b_{2}=-2, c_{2}=1 \\
& \text { Then, }\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=\left|\begin{array}{lll}
4 & 6 & 8 \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right| \\
& =4(-6+2)-6(7-1)+8(-14+6) \\
& =-16-36-64 \\
& =-116 \\
& \Rightarrow \sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}=\sqrt{(-6+2)^{2}+(1+7)^{2}+(-14+6)^{2}} \\
& =\sqrt{16+36+64} \\
& =\sqrt{116} \\
& =2 \sqrt{29}
\end{aligned}
$$

Substituting all the values in equation (1), we obtain
$d=\frac{-116}{2 \sqrt{29}}=\frac{-58}{\sqrt{29}}=\frac{-2 \times 29}{\sqrt{29}}=-2 \sqrt{29}$
Since distance is always non-negative, the distance between the given lines is $2 \sqrt{29}$ units.

Question 16:

Find the shortest distance between the lines whose vector equations are
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$
and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
Answer

The given lines are $\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
It is known that the shortest distance between the lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, is given by,
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
Comparing the given equations with $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, we obtain

$$
\begin{aligned}
& \vec{a}_{1}=\hat{i}+2 \hat{j}+3 \hat{k} \\
& \vec{b}_{1}=\hat{i}-3 \hat{j}+2 \hat{k} \\
& \vec{a}_{2}=4 \hat{i}+5 \hat{j}+6 \hat{k} \\
& \vec{b}_{2}=2 \hat{i}+3 \hat{j}+\hat{k} \\
& \vec{a}_{2}-\vec{a}_{1}=(4 \hat{i}+5 \hat{j}+6 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})=3 \hat{i}+3 \hat{j}+3 \hat{k} \\
& \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 2 \\
2 & 3 & 1
\end{array}\right|=(-3-6) \hat{i}-(1-4) \hat{j}+(3+6) \hat{k}=-9 \hat{i}+3 \hat{j}+9 \hat{k} \\
& \Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(-9)^{2}+(3)^{2}+(9)^{2}}=\sqrt{81+9+81}=\sqrt{171}=3 \sqrt{19} \\
& \left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)=(-9 \hat{i}+3 \hat{j}+9 \hat{k}) \cdot(3 \hat{i}+3 \hat{j}+3 \hat{k}) \\
& =-9 \times 3+3 \times 3+9 \times 3 \\
& =9
\end{aligned}
$$

Substituting all the values in equation (1), we obtain
$d=\left|\frac{9}{3 \sqrt{19}}\right|=\frac{3}{\sqrt{19}}$

Therefore, the shortest distance between the two given lines is $\frac{3}{\sqrt{19}}$ units.

Question 17:

Find the shortest distance between the lines whose vector equations are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and
$\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$
Answer
The given lines are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$
$\Rightarrow \vec{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+t(-\hat{i}+\hat{j}-2 \hat{k})$
$\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$
$\Rightarrow \vec{r}=(\hat{i}-\hat{j}+\hat{k})+s(\hat{i}+2 \hat{j}-2 \hat{k})$

It is known that the shortest distance between the lines, $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$, is given by,
$d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
For the given equations,
$\vec{a}_{1}=\hat{i}-2 \hat{j}+3 \hat{k}$
$\vec{b}_{1}=-\hat{i}+\hat{j}-2 \hat{k}$
$\vec{a}_{2}=\hat{i}-\hat{j}-\hat{k}$
$\vec{b}_{2}=\hat{i}+2 \hat{j}-2 \hat{k}$
$\vec{a}_{2}-\vec{a}_{1}=(\hat{i}-\hat{j}-\hat{k})-(\hat{i}-2 \hat{j}+3 \hat{k})=\hat{j}-4 \hat{k}$
$\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2\end{array}\right|=(-2+4) \hat{i}-(2+2) \hat{j}+(-2-1) \hat{k}=2 \hat{i}-4 \hat{j}-3 \hat{k}$
$\Rightarrow\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(2)^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{4+16+9}=\sqrt{29}$
$\therefore\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)=(2 \hat{i}-4 \hat{j}-3 \hat{k}) \cdot(\hat{j}-4 \hat{k})=-4+12=8$
Substituting all the values in equation (3), we obtain
$d=\left|\frac{8}{\sqrt{29}}\right|=\frac{8}{\sqrt{29}}$

Therefore, the shortest distance between the lines is $\frac{8}{\sqrt{29}}$ units.

