Exercise 7.1

Question 1:

$\sin 2 x$
Answer
The anti derivative of $\sin 2 x$ is a function of x whose derivative is $\sin 2 x$. It is known that,
$\frac{d}{d x}(\cos 2 x)=-2 \sin 2 x$
$\Rightarrow \sin 2 x=-\frac{1}{2} \frac{d}{d x}(\cos 2 x)$
$\therefore \sin 2 x=\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x\right)$
Therefore, the anti derivative of $\sin 2 x$ is $-\frac{1}{2} \cos 2 x$

Question 2:
$\operatorname{Cos} 3 x$
Answer
The anti derivative of $\cos 3 x$ is a function of x whose derivative is $\cos 3 x$.
It is known that,
$\frac{d}{d x}(\sin 3 x)=3 \cos 3 x$
$\Rightarrow \cos 3 x=\frac{1}{3} \frac{d}{d x}(\sin 3 x)$
$\therefore \cos 3 x=\frac{d}{d x}\left(\frac{1}{3} \sin 3 x\right)$
Therefore, the anti derivative of $\cos 3 x$ is $\frac{1}{3} \sin 3 x$.

Question 3:
$e^{2 x}$
Answer
The anti derivative of $e^{2 x}$ is the function of x whose derivative is $e^{2 x}$. It is known that,
$\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}$
$\Rightarrow e^{2 x}=\frac{1}{2} \frac{d}{d x}\left(e^{2 x}\right)$
$\therefore e^{2 x}=\frac{d}{d x}\left(\frac{1}{2} e^{2 x}\right)$
Therefore, the anti derivative of $e^{2 x}$ is $\frac{1}{2} e^{2 x}$.

Question 4:
$(a x+b)^{2}$
Answer
The anti derivative of $(a x+b)^{2}$ is the function of x whose derivative is $(a x+b)^{2}$. It is known that,
$\frac{d}{d x}(a x+b)^{3}=3 a(a x+b)^{2}$
$\Rightarrow(a x+b)^{2}=\frac{1}{3 a} \frac{d}{d x}(a x+b)^{3}$
$\therefore(a x+b)^{2}=\frac{d}{d x}\left(\frac{1}{3 a}(a x+b)^{3}\right)$
Therefore, the anti derivative of $(a x+b)^{2}$ is $\frac{1}{3 a}(a x+b)^{3}$

Question 5:
$\sin 2 x-4 e^{3 x}$
Answer
The anti derivative of $\left(\sin 2 x-4 e^{3 x}\right)$ is the function of x whose derivative is $\left(\sin 2 x-4 e^{3 x}\right)$.

It is known that,
$\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)=\sin 2 x-4 e^{3 x}$
Therefore, the anti derivative of $\left(\sin 2 x-4 e^{3 x}\right)_{\text {is }}\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)$.

Question 6:
$\int\left(4 e^{3 x}+1\right) d x$
Answer
$\int\left(4 e^{3 x}+1\right) d x$
$=4 \int e^{3 x} d x+\int 1 d x$
$=4\left(\frac{e^{3 x}}{3}\right)+x+\mathrm{C}$
$=\frac{4}{3} e^{3 x}+x+\mathrm{C}$

Question 7:
$\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x$
Answer
$\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x$
$=\int\left(x^{2}-1\right) d x$
$=\int x^{2} d x-\int 1 d x$
$=\frac{x^{3}}{3}-x+\mathrm{C}$

Question 8:
$\int\left(a x^{2}+b x+c\right) d x$
Answer
$\int\left(a x^{2}+b x+c\right) d x$
$=a \int x^{2} d x+b \int x d x+c \int 1 . d x$
$=a\left(\frac{x^{3}}{3}\right)+b\left(\frac{x^{2}}{2}\right)+c x+\mathrm{C}$
$=\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x+\mathrm{C}$

Question 9:
$\int\left(2 x^{2}+e^{x}\right) d x$
Answer
$\int\left(2 x^{2}+e^{x}\right) d x$
$=2 \int x^{2} d x+\int e^{x} d x$
$=2\left(\frac{x^{3}}{3}\right)+e^{x}+\mathrm{C}$
$=\frac{2}{3} x^{3}+e^{x}+\mathrm{C}$

Question 10:
$\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x$
Answer

$$
\begin{aligned}
& \int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x \\
& =\int\left(x+\frac{1}{x}-2\right) d x \\
& =\int x d x+\int \frac{1}{x} d x-2 \int 1 \cdot d x \\
& =\frac{x^{2}}{2}+\log |x|-2 x+\mathrm{C}
\end{aligned}
$$

Question 11:
$\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$
Answer
$\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$
$=\int\left(x+5-4 x^{-2}\right) d x$
$=\int x d x+5 \int 1 \cdot d x-4 \int x^{-2} d x$
$=\frac{x^{2}}{2}+5 x-4\left(\frac{x^{-1}}{-1}\right)+\mathrm{C}$
$=\frac{x^{2}}{2}+5 x+\frac{4}{x}+C$

Question 12:
$\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x$
Answer
$\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x$
$=\int\left(x^{\frac{5}{2}}+3 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}\right) d x$
$=\frac{x^{\frac{7}{2}}}{\frac{7}{2}}+\frac{3\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\frac{4\left(x^{\frac{1}{2}}\right)}{\frac{1}{2}}+\mathrm{C}$
$=\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 x^{\frac{1}{2}}+\mathrm{C}$
$=\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 \sqrt{x}+\mathrm{C}$

Question 13:
$\int \frac{x^{3}-x^{2}+x-1}{x-1} d x$
Answer

$$
\int \frac{x^{3}-x^{2}+x-1}{x-1} d x
$$

On dividing, we obtain
$=\int\left(x^{2}+1\right) d x$
$=\int x^{2} d x+\int 1 d x$
$=\frac{x^{3}}{3}+x+\mathrm{C}$

Question 14:
$\int(1-x) \sqrt{x} d x$
Answer
$\int(1-x) \sqrt{x} d x$
$=\int\left(\sqrt{x}-x^{\frac{3}{2}}\right) d x$
$=\int x^{\frac{1}{2}} d x-\int x^{\frac{3}{2}} d x$
$=\frac{x^{\frac{3}{2}}}{3}-\frac{x^{\frac{5}{2}}}{5}+\mathrm{C}$
22
$=\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}+\mathrm{C}$

Question 15:
$\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x$
Answer
$\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x$
$=\int\left(3 x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+3 x^{\frac{1}{2}}\right) d x$
$=3 \int x^{\frac{5}{2}} d x+2 \int x^{\frac{3}{2}} d x+3 \int x^{\frac{1}{2}} d x$
$=3\left(\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right)+2\left(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)+3 \frac{\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\mathrm{C}$
$=\frac{6}{7} x^{\frac{7}{2}}+\frac{4}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+\mathrm{C}$

Question 16:
$\int\left(2 x-3 \cos x+e^{x}\right) d x$
Answer
$\int\left(2 x-3 \cos x+e^{x}\right) d x$
$=2 \int x d x-3 \int \cos x d x+\int e^{x} d x$
$=\frac{2 x^{2}}{2}-3(\sin x)+e^{x}+\mathrm{C}$
$=x^{2}-3 \sin x+e^{x}+\mathrm{C}$

Question 17:
$\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$
Answer
$\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$

$$
\begin{aligned}
& =2 \int x^{2} d x-3 \int \sin x d x+5 \int x^{\frac{1}{2}} d x \\
& =\frac{2 x^{3}}{3}-3(-\cos x)+5\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{2}{3} x^{3}+3 \cos x+\frac{10}{3} x^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

Question 18:
$\int \sec x(\sec x+\tan x) d x$
Answer
$\int \sec x(\sec x+\tan x) d x$
$=\int\left(\sec ^{2} x+\sec x \tan x\right) d x$
$=\int \sec ^{2} x d x+\int \sec x \tan x d x$
$=\tan x+\sec x+C$

Question 19:
$\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$
Answer
$\int \frac{\sec ^{2} x}{\operatorname{cosec} x} d x$

$$
\begin{aligned}
& =\int \frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}} d x \\
& =\int \frac{\sin ^{2} x}{\cos ^{2} x} d x \\
& =\int \tan ^{2} x d x \\
& =\int\left(\sec ^{2} x-1\right) d x \\
& =\int \sec ^{2} x d x-\int 1 d x \\
& =\tan x-x+C
\end{aligned}
$$

Question 20:
$\int \frac{2-3 \sin x}{\cos ^{2} x} d x$
Answer
$\int \frac{2-3 \sin x}{\cos ^{2} x} d x$
$=\int\left(\frac{2}{\cos ^{2} x}-\frac{3 \sin x}{\cos ^{2} x}\right) d x$
$=\int 2 \sec ^{2} x d x-3 \int \tan x \sec x d x$
$=2 \tan x-3 \sec x+C$

Question 21:
The anti derivative of $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$ equals
(A) $\frac{1}{3} x^{\frac{1}{3}}+2 x^{\frac{1}{2}}+\mathrm{C}$ (B) $\frac{2}{3} x^{\frac{2}{3}}+\frac{1}{2} x^{2}+\mathrm{C}$
(C) $\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+\mathrm{C}$ (D) $\frac{3}{2} x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{1}{2}}+\mathrm{C}$

Answer
$\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$
$=\int x^{\frac{1}{2}} d x+\int x^{-\frac{1}{2}} d x$
$=\frac{x^{\frac{3}{2}}}{3}+\frac{x^{\frac{1}{2}}}{1}+\mathrm{C}$
22
$=\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+\mathrm{C}$
Hence, the correct Answer is C.

Question 22:
If $\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$ such that $f(2)=0$, then $f(x)$ is
(A) $x^{4}+\frac{1}{x^{3}}-\frac{129}{8}$ (B) $x^{3}+\frac{1}{x^{4}}+\frac{129}{8}$
(C) $x^{4}+\frac{1}{x^{3}}+\frac{129}{8}$
(D) $x^{3}+\frac{1}{x^{4}}-\frac{129}{8}$

Answer
It is given that,
$\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$
\therefore Anti derivative of $4 x^{3}-\frac{3}{x^{4}}=f(x)$

$$
\begin{aligned}
& \therefore f(x)=\int 4 x^{3}-\frac{3}{x^{4}} d x \\
& f(x)=4 \int x^{3} d x-3 \int\left(x^{-4}\right) d x \\
& f(x)=4\left(\frac{x^{4}}{4}\right)-3\left(\frac{x^{-3}}{-3}\right)+\mathrm{C} \\
& \therefore f(x)=x^{4}+\frac{1}{x^{3}}+\mathrm{C}
\end{aligned}
$$

Also,
$f(2)=0$
$\therefore f(2)=(2)^{4}+\frac{1}{(2)^{3}}+\mathrm{C}=0$
$\Rightarrow 16+\frac{1}{8}+\mathrm{C}=0$
$\Rightarrow \mathrm{C}=-\left(16+\frac{1}{8}\right)$
$\Rightarrow \mathrm{C}=\frac{-129}{8}$
$\therefore f(x)=x^{4}+\frac{1}{x^{3}}-\frac{129}{8}$
Hence, the correct Answer is A.

