Question 1:
$\int_{0}^{1} \frac{x}{x^{2}+1} d x$
Answer
$\int_{0}^{1} \frac{x}{x^{2}+1} d x$
Let $x^{2}+1=t \Rightarrow 2 x d x=d t$
When $x=0, t=1$ and when $x=1, t=2$

$$
\begin{aligned}
\therefore \int_{0}^{1} \frac{x}{x^{2}+1} d x & =\frac{1}{2} \int^{2} \frac{d t}{t} \\
& =\frac{1}{2}[\log |t|]_{1}^{2} \\
& =\frac{1}{2}[\log 2-\log 1] \\
& =\frac{1}{2} \log 2
\end{aligned}
$$

Question 2:
$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi$
Answer
Let $I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{4} \phi \cos \phi d \phi$
Also, let $\sin \phi=t \Rightarrow \cos \phi d \phi=d t$

When $\phi=0, t=0$ and when $\phi=\frac{\pi}{2}, t=1$

$$
\begin{aligned}
\therefore I & =\int_{0}^{1} \sqrt{t}\left(1-t^{2}\right)^{2} d t \\
& =\int_{0}^{1} t^{\frac{1}{2}}\left(1+t^{4}-2 t^{2}\right) d t \\
& =\int_{0}^{1}\left[t^{\frac{1}{2}}+t^{\frac{9}{2}}-2 t^{\frac{5}{2}}\right] d t
\end{aligned}
$$

$$
=\left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{11}{2}}}{\frac{11}{2}}-\frac{2 t^{\frac{7}{2}}}{\frac{7}{2}}\right]_{0}^{1}
$$

$$
=\frac{2}{3}+\frac{2}{11}-\frac{4}{7}
$$

$$
=\frac{154+42-132}{231}
$$

$$
=\frac{64}{231}
$$

Question 3:
$\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$
Answer
Let $I=\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$
Also, let $x=\tan \theta \square d x=\sec ^{2} \theta \mathrm{~d} \theta$
When $x=0, \theta=0$ and when $x=1, \quad \theta=\frac{\pi}{4}$

$$
\begin{aligned}
I & =\int_{0}^{\pi} \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \sec ^{2} \theta d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \sin ^{-1}(\sin 2 \theta) \sec ^{2} \theta d \theta \\
& =\int_{0}^{\frac{\pi}{4}} 2 \theta \cdot \sec ^{2} \theta d \theta \\
& =2 \int_{0}^{\pi} \theta \cdot \sec ^{2} \theta d \theta
\end{aligned}
$$

Taking θ as first function and $\sec ^{2} \theta$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =2\left[\theta \int \sec ^{2} \theta d \theta-\int\left\{\left(\frac{d}{d x} \theta\right) \int \sec ^{2} \theta d \theta\right\} d \theta\right]_{0}^{\frac{\pi}{4}} \\
& =2\left[\theta \tan \theta-\int \tan \theta d \theta\right]_{0}^{\frac{\pi}{4}} \\
& =2[\theta \tan \theta+\log |\cos \theta|]_{0}^{\frac{\pi}{4}} \\
& =2\left[\frac{\pi}{4} \tan \frac{\pi}{4}+\log \left|\cos \frac{\pi}{4}\right|-\log |\cos 0|\right] \\
& =2\left[\frac{\pi}{4}+\log \left(\frac{1}{\sqrt{2}}\right)-\log 1\right] \\
& =2\left[\frac{\pi}{4}-\frac{1}{2} \log 2\right] \\
& =\frac{\pi}{2}-\log 2
\end{aligned}
$$

Question 4:

$$
\int_{0}^{2} x \sqrt{x+2}\left(\text { Put } x+2=t^{2}\right)
$$

Answer
$\int_{0}^{2} x \sqrt{x+2} d x$
Let $x+2=t^{2} \square d x=2 t d t$
When $x=0, t=\sqrt{2}$ and when $x=2, t=2$

$$
\begin{aligned}
\therefore \int_{0}^{2} x \sqrt{x+2} d x & =\int_{\sqrt{2}}^{2}\left(t^{2}-2\right) \sqrt{t^{2}} 2 t d t \\
& =2 \int_{\sqrt{2}}^{2}\left(t^{2}-2\right) t^{2} d t \\
& =2 \int_{\sqrt{2}}^{2}\left(t^{4}-2 t^{2}\right) d t \\
& =2\left[\frac{t^{5}}{5}-\frac{2 t^{3}}{3}\right]_{\sqrt{2}}^{2} \\
& =2\left[\frac{32}{5}-\frac{16}{3}-\frac{4 \sqrt{2}}{5}+\frac{4 \sqrt{2}}{3}\right] \\
& =2\left[\frac{96-80-12 \sqrt{2}+20 \sqrt{2}}{15}\right] \\
& =2\left[\frac{16+8 \sqrt{2}}{15}\right] \\
& =\frac{16(2+\sqrt{2})}{15} \\
& =\frac{16 \sqrt{2}(\sqrt{2}+1)}{15}
\end{aligned}
$$

Question 5:
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$
Answer
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$
Let $\cos x=t \square-\sin x d x=d t$
When $x=0, t=1$ and when $x=\frac{\pi}{2}, t=0$

$$
\begin{aligned}
\Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x & =-\int_{1}^{0} \frac{d t}{1+t^{2}} \\
& =-\left[\tan ^{-1} t\right]_{1}^{0} \\
& =-\left[\tan ^{-1} 0-\tan ^{-1} 1\right] \\
& =-\left[-\frac{\pi}{4}\right] \\
& =\frac{\pi}{4}
\end{aligned}
$$

Question 6:
$\int_{0}^{2} \frac{d x}{x+4-x^{2}}$
Answer

$$
\begin{aligned}
\int_{0}^{2} \frac{d x}{x+4-x^{2}} & =\int_{0}^{2} \frac{d x}{-\left(x^{2}-x-4\right)} \\
& =\int_{0}^{2} \frac{d x}{-\left(x^{2}-x+\frac{1}{4}-\frac{1}{4}-4\right)} \\
& =\int_{0}^{2} \frac{d x}{-\left[\left(x-\frac{1}{2}\right)^{2}-\frac{17}{4}\right]} \\
& =\int_{0}^{2} \frac{d x}{\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}} \\
\text { Let } x-\frac{1}{2}=t & \square d x=d t
\end{aligned}
$$

When $x=0, t=-\frac{1}{2}$ and when $x=2, t=\frac{3}{2}$
$\therefore \int_{0}^{2} \frac{d x}{\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}=\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{d t}{\left(\frac{\sqrt{17}}{2}\right)^{2}-t^{2}}$

$$
=\left[\frac{1}{2\left(\frac{\sqrt{17}}{2}\right)} \log \frac{\frac{\sqrt{17}}{2}+t}{\frac{\sqrt{17}}{2}-t}\right]_{-\frac{1}{2}}^{\frac{3}{2}}
$$

$$
=\frac{1}{\sqrt{17}}\left[\log \frac{\frac{\sqrt{17}}{2}+\frac{3}{2}}{\frac{\sqrt{17}}{2}-\frac{3}{2}}-\frac{\log \frac{\sqrt{17}}{2}-\frac{1}{2}}{\log \frac{\sqrt{17}}{2}+\frac{1}{2}}\right]
$$

$$
=\frac{1}{\sqrt{17}}\left[\log \frac{\sqrt{17}+3}{\sqrt{17}-3}-\log \frac{\sqrt{17}-1}{\sqrt{17}+1}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \frac{\sqrt{17}+3}{\sqrt{17}-3} \times \frac{\sqrt{17}+1}{\sqrt{17}-1}
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{17+3+4 \sqrt{17}}{17+3-4 \sqrt{17}}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{20+4 \sqrt{17}}{20-4 \sqrt{17}}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left(\frac{5+\sqrt{17}}{5-\sqrt{17}}\right)
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{(5+\sqrt{17})(5+\sqrt{17})}{25-17}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{25+17+10 \sqrt{17}}{8}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left(\frac{42+10 \sqrt{17}}{8}\right)
$$

$$
=\frac{1}{\sqrt{17}} \log \left(\frac{21+5 \sqrt{17}}{4}\right)
$$

Question 7:
$\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}$
Answer
$\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}=\int_{-1}^{1} \frac{d x}{\left(x^{2}+2 x+1\right)+4}=\int_{-1}^{1} \frac{d x}{(x+1)^{2}+(2)^{2}}$
Let $x+1=t \square d x=d t$
When $x=-1, t=0$ and when $x=1, t=2$

$$
\begin{aligned}
\therefore \int_{-1}^{1} \frac{d x}{(x+1)^{2}+(2)^{2}} & =\int_{0}^{2} \frac{d t}{t^{2}+2^{2}} \\
& =\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right]_{0}^{2} \\
& =\frac{1}{2} \tan ^{-1} 1-\frac{1}{2} \tan ^{-1} 0 \\
& =\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{8}
\end{aligned}
$$

Question 8:
$\int^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$
Answer
$\int^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$
Let $2 x=t \square 2 d x=d t$
When $x=1, t=2$ and when $x=2, t=4$

$$
\begin{aligned}
\therefore \int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x & =\frac{1}{2} \int_{2}^{4}\left(\frac{2}{t}-\frac{2}{t^{2}}\right) e^{t} d t \\
& =\int_{2}^{4}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) e^{t} d t
\end{aligned}
$$

Let $\frac{1}{t}=f(t)$
Then, $f^{\prime}(t)=-\frac{1}{t^{2}}$

$$
\begin{aligned}
\Rightarrow \int_{2}^{4}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) e^{t} d t & =\int_{2}^{4} e^{t}\left[f(t)+f^{\prime}(t)\right] d t \\
& =\left[e^{t} f(t)\right]_{2}^{4} \\
& =\left[e^{t} \cdot \frac{2}{t}\right]_{2}^{4} \\
& =\left[\frac{e^{t}}{t}\right]_{2}^{4} \\
& =\frac{e^{4}}{4}-\frac{e^{2}}{2} \\
& =\frac{e^{2}\left(e^{2}-2\right)}{4}
\end{aligned}
$$

Question 9:
The value of the integral $\int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x$ is
A. 6
B. 0
C. 3
D. 4

Answer

Also, let $x=\sin \theta \Rightarrow d x=\cos \theta d \theta$
When $x=\frac{1}{3}, \theta=\sin ^{-1}\left(\frac{1}{3}\right)$ and when $x=1, \theta=\frac{\pi}{2}$
$\Rightarrow I=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{\left(\sin \theta-\sin ^{3} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta} \cos \theta d \theta$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}\left(1-\sin ^{2} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta} \cos \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^{4} \theta} \cos \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^{2} \theta \sin ^{2} \theta} \cos \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right.}^{\frac{\pi}{2}} \frac{(\cos \theta)^{\frac{5}{3}}}{(\sin \theta)^{\frac{5}{3}}} \operatorname{cosec}^{2} \theta d \theta
$$

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}(\cot \theta)^{\frac{5}{3}} \operatorname{cosec}^{2} \theta d \theta
$$

Let $\cot \theta=t \square-\operatorname{cosec} 2 \theta d \theta=d t$

When $\theta=\sin ^{-1}\left(\frac{1}{3}\right), t=2 \sqrt{2}$ and when $\theta=\frac{\pi}{2}, t=0$
$\therefore I=-\int_{2 \sqrt{2}}^{0}(t)^{\frac{5}{3}} d t$

$$
=-\left[\frac{3}{8}(t)^{\frac{8}{3}}\right]_{2 \sqrt{2}}^{0}
$$

$$
=-\frac{3}{8}\left[(t)^{\frac{8}{3}}\right]_{2 \sqrt{2}}^{0}
$$

$$
=-\frac{3}{8}\left[-(2 \sqrt{2})^{\frac{8}{3}}\right]
$$

$$
=\frac{3}{8}\left[(\sqrt{8})^{\frac{8}{3}}\right]
$$

$$
=\frac{3}{8}\left[(8)^{\frac{4}{3}}\right]
$$

$$
=\frac{3}{8}[16]
$$

$$
=3 \times 2
$$

$$
=6
$$

Hence, the correct Answer is A.

Question 10:
If $f(x)=\int_{0}^{x} t \sin t d t$, then $f^{\prime}(x)$ is
A. $\cos x+x \sin x$
B. $x \sin x$
C. $x \cos x$
D. $\sin x+x \cos x$

Answer
$f(x)=\int_{0}^{x} t \sin t d t$
Integrating by parts, we obtain

$$
\begin{aligned}
f(x) & =t \int_{0}^{x} \sin t d t-\int_{0}^{x}\left\{\left(\frac{d}{d t} t\right) \int \sin t d t\right\} d t \\
& =[t(-\cos t)]_{0}^{x}-\int_{0}^{x}(-\cos t) d t \\
& =[-t \cos t+\sin t]_{0}^{x} \\
& =-x \cos x+\sin x
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =-[\{x(-\sin x)\}+\cos x]+\cos x \\
& =x \sin x-\cos x+\cos x \\
& =x \sin x
\end{aligned}
$$

Hence, the correct Answer is B.

