Question 1:
$\frac{2 x}{1+x^{2}}$
Answer
Let $1+x^{2}=t$
$\therefore 2 x d x=d t$
$\Rightarrow \int \frac{2 x}{1+x^{2}} d x=\int_{t}^{1} d t$
$=\log |t|+\mathrm{C}$
$=\log \left|1+x^{2}\right|+C$
$=\log \left(1+x^{2}\right)+C$

Question 2:
$(\log x)^{2}$
x
Answer
Let $\log |x|=t$
$\therefore \frac{1}{x} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{(\log |x|)^{2}}{x} d x & =\int t^{2} d t \\
& =\frac{t^{3}}{3}+\mathrm{C} \\
& =\frac{(\log |x|)^{3}}{3}+\mathrm{C}
\end{aligned}
$$

Question 3:
$\frac{1}{x+x \log x}$
Answer
$\frac{1}{x+x \log x}=\frac{1}{x(1+\log x)}$
Let $1+\log x=t$
$\therefore \frac{1}{x} d x=d t$
$\Rightarrow \int \frac{1}{x(1+\log x)} d x=\int_{t}^{1} d t$
$=\log |t|+\mathrm{C}$
$=\log |1+\log x|+C$

Question 4:
$\sin x \cdot \sin (\cos x)$

Answer
$\sin x \cdot \sin (\cos x)$

Let $\cos x=t$
$\therefore-\sin x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \sin x \cdot \sin (\cos x) d x & =-\int \sin t d t \\
& =-[-\cos t]+\mathrm{C} \\
& =\cos t+\mathrm{C} \\
& =\cos (\cos x)+\mathrm{C}
\end{aligned}
$$

Question 5:
$\sin (a x+b) \cos (a x+b)$
Answer
$\sin (a x+b) \cos (a x+b)=\frac{2 \sin (a x+b) \cos (a x+b)}{2}=\frac{\sin 2(a x+b)}{2}$
Let $2(a x+b)=t$
$\therefore 2 a d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\sin 2(a x+b)}{2} d x & =\frac{1}{2} \int \frac{\sin t d t}{2 a} \\
& =\frac{1}{4 a}[-\cos t]+\mathrm{C} \\
& =\frac{-1}{4 a} \cos 2(a x+b)+\mathrm{C}
\end{aligned}
$$

Question 6:
$\sqrt{a x+b}$
Answer
Let $a x+b=t$
$\Rightarrow a d x=d t$
$\therefore d x=\frac{1}{a} d t$
$\Rightarrow \int(a x+b)^{\frac{1}{2}} d x=\frac{1}{a} \int t^{\frac{1}{2}} d t$
$=\frac{1}{a}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
$=\frac{2}{3 a}(a x+b)^{\frac{3}{2}}+\mathrm{C}$

Question 7:
$x \sqrt{x+2}$
Answer
Let $(x+2)=t$
$\therefore d x=d t$
$\Rightarrow \int x \sqrt{x+2} d x=\int(t-2) \sqrt{t} d t$
$=\int\left(t^{\frac{3}{2}}-2 t^{\frac{1}{2}}\right) d t$
$=\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t$
$=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
$=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+\mathrm{C}$ $=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+\mathrm{C}$

Question 8:
$x \sqrt{1+2 x^{2}}$
Answer
Let $1+2 x^{2}=t$
$\therefore 4 x d x=d t$

$$
\begin{aligned}
\Rightarrow \int x \sqrt{1+2 x^{2}} d x & =\int \frac{\sqrt{t} d t}{4} \\
& =\frac{1}{4} \int t^{\frac{1}{2}} d t \\
& =\frac{1}{4}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{1}{6}\left(1+2 x^{2}\right)^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

Question 9:
$(4 x+2) \sqrt{x^{2}+x+1}$
Answer
Let $x^{2}+x+1=t$
$\therefore(2 x+1) d x=d t$
$\int(4 x+2) \sqrt{x^{2}+x+1} d x$
$=\int 2 \sqrt{t} d t$
$=2 \int \sqrt{t} d t$
$=2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
$=\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\mathrm{C}$

Question 10:
$\frac{1}{x-\sqrt{x}}$
Answer
$\frac{1}{x-\sqrt{x}}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}$
Let $(\sqrt{x}-1)=t$
$\frac{1}{\therefore 2 \sqrt{x}} d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)} d x=\int \frac{2}{t} d t$
$=2 \log |t|+\mathrm{C}$
$=2 \log |\sqrt{x}-1|+C$

Question 11:
$\frac{x}{\sqrt{x+4}}, x>0$
Answer
Let $x+4=t$
$\therefore d x=d t$

$$
\begin{aligned}
\int \frac{x}{\sqrt{x+4}} d x & =\int \frac{(t-4)}{\sqrt{t}} d t \\
& =\int\left(\sqrt{t}-\frac{4}{\sqrt{t}}\right) d t \\
& =\frac{t^{\frac{3}{2}}}{\frac{3}{2}}-4\left(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right)+\mathrm{C} \\
& =\frac{2}{3}(t)^{\frac{3}{2}}-8(t)^{\frac{1}{2}}+\mathrm{C} \\
& =\frac{2}{3} t \cdot t^{\frac{1}{2}}-8 t^{\frac{1}{2}}+\mathrm{C} \\
& =\frac{2}{3} t^{\frac{1}{2}}(t-12)+\mathrm{C} \\
& =\frac{2}{3}(x+4)^{\frac{1}{2}}(x+4-12)+\mathrm{C} \\
& =\frac{2}{3} \sqrt{x+4}(x-8)+\mathrm{C}
\end{aligned}
$$

Question 12:
$\left(x^{3}-1\right)^{\frac{1}{3}} x^{5}$
Answer
Let $x^{3}-1=t$
$\therefore 3 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow \int\left(x^{3}-1\right)^{\frac{1}{3}} x^{5} d x & =\int\left(x^{3}-1\right)^{\frac{1}{3}} x^{3} \cdot x^{2} d x \\
& =\int t^{\frac{1}{3}}(t+1) \frac{d t}{3} \\
& =\frac{1}{3} \int\left(t^{\frac{4}{3}}+t^{\frac{1}{3}}\right) d t \\
& =\frac{1}{3}\left[\frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}}\right]+\mathrm{C} \\
& =\frac{1}{3}\left[\frac{3}{7} t^{\frac{7}{3}}+\frac{3}{4} t^{\frac{4}{3}}\right]+\mathrm{C} \\
& =\frac{1}{7}\left(x^{3}-1\right)^{\frac{7}{3}}+\frac{1}{4}\left(x^{3}-1\right)^{\frac{4}{3}}+\mathrm{C}
\end{aligned}
$$

Question 13:
$\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}$
Answer
Let $2+3 x^{3}=t$
$\therefore 9 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{x^{2}}{\left(2+3 x^{3}\right)^{3}} d x & =\frac{1}{9} \int \frac{d t}{(t)^{3}} \\
& =\frac{1}{9}\left[\frac{t^{-2}}{-2}\right]+\mathrm{C} \\
& =\frac{-1}{18}\left(\frac{1}{t^{2}}\right)+\mathrm{C} \\
& =\frac{-1}{18\left(2+3 x^{3}\right)^{2}}+\mathrm{C}
\end{aligned}
$$

Question 14:
$\frac{1}{x(\log x)^{m}}, x>0$
Answer
Let $\log x=t$
$\therefore \frac{1}{x} d x=d t$
$\Rightarrow \int \frac{1}{x(\log x)^{m}} d x=\int \frac{d t}{(t)^{m}}$
$=\left(\frac{t^{-m+1}}{1-m}\right)+\mathrm{C}$
$=\frac{(\log x)^{1-m}}{(1-m)}+\mathrm{C}$

Question 15:
$\frac{x}{9-4 x^{2}}$
Answer

Let $9-4 x^{2}=t$
$\therefore-8 x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{x}{9-4 x^{2}} d x & =\frac{-1}{8} \int \frac{1}{t} d t \\
& =\frac{-1}{8} \log |t|+\mathrm{C} \\
& =\frac{-1}{8} \log \left|9-4 x^{2}\right|+\mathrm{C}
\end{aligned}
$$

Question 16:
$e^{2 x+3}$
Answer
Let $2 x+3=t$
$\therefore 2 d x=d t$

$$
\begin{aligned}
\Rightarrow \int e^{2 x+3} d x & =\frac{1}{2} \int e^{t} d t \\
& =\frac{1}{2}\left(e^{t}\right)+\mathrm{C} \\
& =\frac{1}{2} e^{(2 x+3)}+\mathrm{C}
\end{aligned}
$$

Question 17:
$\frac{x}{e^{x^{2}}}$
Answer
Let $x^{2}=t$
$\therefore 2 x d x=d t$
$\Rightarrow \int \frac{x}{e^{x^{2}}} d x=\frac{1}{2} \int \frac{1}{e^{t}} d t$
$=\frac{1}{2} \int e^{-t} d t$
$=\frac{1}{2}\left(\frac{e^{-t}}{-1}\right)+\mathrm{C}$
$=-\frac{1}{2} e^{-x^{2}}+\mathrm{C}$
$=\frac{-1}{2 e^{x^{2}}}+\mathrm{C}$

Question 18:
$\frac{e^{\tan ^{-1} x}}{1+x^{2}}$
Answer
Let $\tan ^{-1} x=t$
$\therefore \frac{1}{1+x^{2}} d x=d t$
$\Rightarrow \int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x=\int e^{t} d t$
$=e^{t}+\mathrm{C}$
$=e^{\tan ^{-1} x}+\mathrm{C}$

Question 19:
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Answer
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Dividing numerator and denominator by e^{x}, we obtain

$$
\begin{aligned}
& \frac{\frac{\left(e^{2 x}-1\right)}{e^{x}}}{\frac{\left(e^{2 x}+1\right)}{e^{x}}}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \text { Let } e^{x}+e^{-x}=t \\
& \therefore\left(e^{x}-e^{-x}\right) d x=d t \\
& \Rightarrow \int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x \\
& =\int \frac{d t}{t} \\
& =\log |t|+\mathrm{C} \\
& =\log \left|e^{x}+e^{-x}\right|+\mathrm{C}
\end{aligned}
$$

Question 20:
$\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}$
Answer
Let $e^{2 x}+e^{-2 x}=t$
$\therefore\left(2 e^{2 x}-2 e^{-2 x}\right) d x=d t$
$\Rightarrow 2\left(e^{2 x}-e^{-2 x}\right) d x=d t$
$\Rightarrow \int\left(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\right) d x=\int \frac{d t}{2 t}$
$=\frac{1}{2} \int_{t}^{1} d t$
$=\frac{1}{2} \log |t|+\mathrm{C}$
$=\frac{1}{2} \log \left|e^{2 x}+e^{-2 x}\right|+\mathrm{C}$

Question 21:
$\tan ^{2}(2 x-3)$
Answer
$\tan ^{2}(2 x-3)=\sec ^{2}(2 x-3)-1$
Let $2 x-3=t$
$\therefore 2 d x=d t$

$$
\begin{aligned}
\Rightarrow \int \tan ^{2}(2 x-3) d x & =\int\left[\left(\sec ^{2}(2 x-3)\right)-1\right] d x \\
& =\frac{1}{2} \int\left(\sec ^{2} t\right) d t-\int 1 d x \\
& =\frac{1}{2} \int \sec ^{2} t d t-\int 1 d x \\
& =\frac{1}{2} \tan t-x+\mathrm{C} \\
& =\frac{1}{2} \tan (2 x-3)-x+\mathrm{C}
\end{aligned}
$$

Question 22:
$\sec ^{2}(7-4 x)$
Answer
Let $7-4 x=t$
$\therefore-4 d x=d t$

$$
\begin{aligned}
\therefore \int \sec ^{2}(7-4 x) d x & =\frac{-1}{4} \int \sec ^{2} t d t \\
& =\frac{-1}{4}(\tan t)+\mathrm{C} \\
& =\frac{-1}{4} \tan (7-4 x)+\mathrm{C}
\end{aligned}
$$

Question 23:
$\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$
Answer
Let $\sin ^{-1} x=t$
$\therefore \frac{1}{\sqrt{1-x^{2}}} d x=d t$

$$
\Rightarrow \int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int t d t
$$

$$
=\frac{t^{2}}{2}+\mathrm{C}
$$

$$
=\frac{\left(\sin ^{-1} x\right)^{2}}{2}+\mathrm{C}
$$

Question 24:

$$
\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}
$$

Answer

$$
\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}=\frac{2 \cos x-3 \sin x}{2(3 \cos x+2 \sin x)}
$$

$$
\text { Let } 3 \cos x+2 \sin x=t
$$

$$
\therefore(-3 \sin x+2 \cos x) d x=d t
$$

$$
\begin{aligned}
\int \frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x} d x & =\int \frac{d t}{2 t} \\
& =\frac{1}{2} \int \frac{1}{t} d t \\
& =\frac{1}{2} \log |t|+\mathrm{C} \\
& =\frac{1}{2} \log |2 \sin x+3 \cos x|+\mathrm{C}
\end{aligned}
$$

Question 25:
$\frac{1}{\cos ^{2} x(1-\tan x)^{2}}$
Answer
$\frac{1}{\cos ^{2} x(1-\tan x)^{2}}=\frac{\sec ^{2} x}{(1-\tan x)^{2}}$
Let $(1-\tan x)=t$
$\therefore-\sec ^{2} x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\sec ^{2} x}{(1-\tan x)^{2}} d x & =\int \frac{-d t}{t^{2}} \\
& =-\int t^{-2} d t \\
& =+\frac{1}{t}+\mathrm{C} \\
& =\frac{1}{(1-\tan x)}+\mathrm{C}
\end{aligned}
$$

Question 26:
$\frac{\cos \sqrt{x}}{\sqrt{x}}$
Answer
Let $\sqrt{x}=t$
$\therefore \frac{1}{2 \sqrt{x}} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x & =2 \int \cos t d t \\
& =2 \sin t+C \\
& =2 \sin \sqrt{x}+C
\end{aligned}
$$

Question 27:
$\sqrt{\sin 2 x} \cos 2 x$
Answer
Let $\sin 2 x=t$
$\therefore 2 \cos 2 x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \sqrt{\sin 2 x} \cos 2 x d x & =\frac{1}{2} \int \sqrt{t} d t \\
& =\frac{1}{2}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{1}{3} t^{\frac{3}{2}}+\mathrm{C} \\
& =\frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

Question 28:
$\frac{\cos x}{\sqrt{1+\sin x}}$
Answer
Let $1+\sin x=t$
$\therefore \cos x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\cos x}{\sqrt{1+\sin x}} d x & =\int \frac{d t}{\sqrt{t}} \\
& =\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{C} \\
& =2 \sqrt{t}+\mathrm{C} \\
& =2 \sqrt{1+\sin x}+\mathrm{C}
\end{aligned}
$$

Question 29:
$\cot x \log \sin x$
Answer
Let $\log \sin x=t$
$\Rightarrow \frac{1}{\sin x} \cdot \cos x d x=d t$
$\therefore \cot x d x=d t$
$\Rightarrow \int \cot x \log \sin x d x=\int t d t$
$=\frac{t^{2}}{2}+\mathrm{C}$
$=\frac{1}{2}(\log \sin x)^{2}+\mathrm{C}$

Question 30:
$\frac{\sin x}{1+\cos x}$
Answer
Let $1+\cos x=t$
$\therefore-\sin x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\sin x}{1+\cos x} d x & =\int-\frac{d t}{t} \\
& =-\log |t|+\mathrm{C} \\
& =-\log |1+\cos x|+\mathrm{C}
\end{aligned}
$$

Question 31:
$\frac{\sin x}{(1+\cos x)^{2}}$
Answer
Let $1+\cos x=t$
$\therefore-\sin x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\sin x}{(1+\cos x)^{2}} d x & =\int-\frac{d t}{t^{2}} \\
& =-\int t^{-2} d t \\
& =\frac{1}{t}+\mathrm{C} \\
& =\frac{1}{1+\cos x}+\mathrm{C}
\end{aligned}
$$

Question 32:
$\frac{1}{1+\cot x}$
Answer

$$
\text { Let } \begin{aligned}
I & =\int \frac{1}{1+\cot x} d x \\
& =\int \frac{1}{1+\frac{\cos x}{\sin x}} d x \\
& =\int \frac{\sin x}{\sin x+\cos x} d x \\
& =\frac{1}{2} \int \frac{2 \sin x}{\sin x+\cos x} d x \\
& =\frac{1}{2} \int \frac{(\sin x+\cos x)+(\sin x-\cos x)}{(\sin x+\cos x)} d x \\
& =\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x \\
& =\frac{1}{2}(x)+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x
\end{aligned}
$$

Let $\sin x+\cos x=t \Rightarrow(\cos x-\sin x) d x=d t$

$$
\begin{aligned}
\therefore I & =\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t} \\
& =\frac{x}{2}-\frac{1}{2} \log |t|+\mathrm{C} \\
& =\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+\mathrm{C}
\end{aligned}
$$

Question 33:
$\frac{1}{1-\tan x}$
Answer

$$
\text { Let } \begin{aligned}
I & =\int \frac{1}{1-\tan x} d x \\
& =\int \frac{1}{1-\frac{\sin x}{\cos x}} d x \\
& =\int \frac{\cos x}{\cos x-\sin x} d x \\
& =\frac{1}{2} \int \frac{2 \cos x}{\cos x-\sin x} d x \\
& =\frac{1}{2} \int \frac{(\cos x-\sin x)+(\cos x+\sin x)}{(\cos x-\sin x)} d x \\
& =\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x \\
& =\frac{x}{2}+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x
\end{aligned}
$$

Put $\cos x-\sin x=t \Rightarrow(-\sin x-\cos x) d x=d t$

$$
\begin{aligned}
\therefore I & =\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t} \\
& =\frac{x}{2}-\frac{1}{2} \log |t|+\mathrm{C} \\
& =\frac{x}{2}-\frac{1}{2} \log |\cos x-\sin x|+\mathrm{C}
\end{aligned}
$$

Question 34:
$\frac{\sqrt{\tan x}}{\sin x \cos x}$
Answer

$$
\text { Let } \begin{aligned}
I & =\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x \\
& =\int \frac{\sqrt{\tan x} \times \cos x}{\sin x \cos x \times \cos x} d x \\
& =\int \frac{\sqrt{\tan x}}{\tan x \cos ^{2} x} d x \\
& =\int \frac{\sec ^{2} x d x}{\sqrt{\tan x}}
\end{aligned}
$$

Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$

$$
\begin{aligned}
\therefore I & =\int \frac{d t}{\sqrt{t}} \\
& =2 \sqrt{t}+\mathrm{C} \\
& =2 \sqrt{\tan x}+\mathrm{C}
\end{aligned}
$$

Question 35:
$(1+\log x)^{2}$
x
Answer
Let $1+\log x=t$
$\frac{1}{x} d x=d t$
$\therefore x$

$$
\begin{aligned}
\Rightarrow \int \frac{(1+\log x)^{2}}{x} d x & =\int t^{2} d t \\
& =\frac{t^{3}}{3}+\mathrm{C} \\
& =\frac{(1+\log x)^{3}}{3}+\mathrm{C}
\end{aligned}
$$

Question 36:
$\frac{(x+1)(x+\log x)^{2}}{x}$
Answer
$\frac{(x+1)(x+\log x)^{2}}{x}=\left(\frac{x+1}{x}\right)(x+\log x)^{2}=\left(1+\frac{1}{x}\right)(x+\log x)^{2}$
Let $(x+\log x)=t$
$\therefore\left(1+\frac{1}{x}\right) d x=d t$

$$
\begin{aligned}
\Rightarrow \int\left(1+\frac{1}{x}\right)(x+\log x)^{2} d x & =\int t^{2} d t \\
& =\frac{t^{3}}{3}+\mathrm{C} \\
& =\frac{1}{3}(x+\log x)^{3}+\mathrm{C}
\end{aligned}
$$

Question 37:
$\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}$
Answer
Let $x^{4}=t$
$\therefore 4 x^{3} d x=d t$
$\Rightarrow \int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x=\frac{1}{4} \int \frac{\sin \left(\tan ^{-1} t\right)}{1+t^{2}} d t$
Let $\tan ^{-1} t=u$
$\frac{1}{\therefore 1+t^{2}} d t=d u$

From (1), we obtain

$$
\begin{aligned}
& \begin{aligned}
& \int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right) d x}{1+x^{8}}=\frac{1}{4} \int \sin u d u \\
&=\frac{1}{4}(-\cos u)+\mathrm{C} \\
&=\frac{-1}{4} \cos \left(\tan ^{-1} t\right)+\mathrm{C} \\
&=\frac{-1}{4} \cos \left(\tan ^{-1} x^{4}\right)+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 38:

$$
\int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}} d x \text { equals }
$$

(A) $10^{x}-x^{10}+\mathrm{C}$
(B) $10^{x}+x^{10}+\mathrm{C}$
(C) $\left(10^{x}-x^{10}\right)^{-1}+\mathrm{C}$
(D) $\log \left(10^{x}+x^{10}\right)+\mathrm{C}$

Answer
Let $x^{10}+10^{x}=t$
$\therefore\left(10 x^{9}+10^{x} \log _{e} 10\right) d x=d t$
$\Rightarrow \int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}} d x=\int \frac{d t}{t}$
$=\log t+\mathrm{C}$
$=\log \left(10^{x}+x^{10}\right)+\mathrm{C}$
Hence, the correct Answer is D.

Question 39:
$\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$ equals
A. $\tan x+\cot x+C$
B. $\tan x-\cot x+C$
C. $\tan x \cot x+C$
D. $\tan x-\cot 2 x+C$

Answer
Let $I=\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$
$=\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$

$$
=\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x
$$

$$
=\int \frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x
$$

$=\int \sec ^{2} x d x+\int \operatorname{cosec}^{2} x d x$
$=\tan x-\cot x+C$
Hence, the correct Answer is B.

