Exercise 7.2

Question 1:

 $\frac{2x}{1+x^2}$

Answer

Let $1 + x^2 = t$

 $\therefore 2x dx = dt$

$$\Rightarrow \int \frac{2x}{1+x^2} dx = \int \frac{1}{t} dt$$
$$= \log|t| + C$$
$$= \log|t| + x^2| + C$$
$$= \log(1+x^2) + C$$

 $\frac{\left(\log x\right)^2}{x}$ Answer
Let $\log |x| = t$

$$\frac{1}{x}dx = dt$$

$$\Rightarrow \int \frac{\left(\log |x|\right)^2}{x} dx = \int t^2 dt$$
$$= \frac{t^3}{3} + C$$
$$= \frac{\left(\log |x|\right)^3}{3} + C$$

Question 3:

 $\frac{1}{x + x \log x}$ Answer $\frac{1}{x + x \log x} = \frac{1}{x(1 + \log x)}$ Let 1 + log x = t

$$\frac{1}{x}dx = dt$$

$$\Rightarrow \int \frac{1}{x(1+\log x)} dx = \int \frac{1}{t} dt$$
$$= \log |t| + C$$
$$= \log |1 + \log x| + C$$

Question 4:

 $\sin x \cdot \sin (\cos x)$

Answer

 $\sin x \cdot \sin (\cos x)$

Let $\cos x = t$

 $\therefore -\sin x \, dx = dt$

$$\Rightarrow \int \sin x \cdot \sin(\cos x) dx = -\int \sin t dt$$
$$= -[-\cos t] + C$$
$$= \cos t + C$$
$$= \cos(\cos x) + C$$

Question 5:

$$sin(ax+b)cos(ax+b)$$
Answer

$$sin(ax+b)cos(ax+b) = \frac{2sin(ax+b)cos(ax+b)}{2} = \frac{sin2(ax+b)}{2}$$
Let $2(ax+b) = t$

 $\therefore 2adx = dt$

$$\Rightarrow \int \frac{\sin 2(ax+b)}{2} dx = \frac{1}{2} \int \frac{\sin t \, dt}{2a}$$
$$= \frac{1}{4a} [-\cos t] + C$$
$$= \frac{-1}{4a} \cos 2(ax+b) + C$$

Question 6:

 $\sqrt{ax+b}$

Answer

Let ax + b = t

 $\Rightarrow adx = dt$

$$\therefore dx = \frac{1}{a}dt$$
$$\Rightarrow \int (ax+b)^{\frac{1}{2}} dx = \frac{1}{a} \int t^{\frac{1}{2}} dt$$
$$= \frac{1}{a} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right) + C$$
$$= \frac{2}{3a} (ax+b)^{\frac{3}{2}} + C$$

Question 7:

 $x\sqrt{x+2}$

Answer

Let (x+2) = t

 $\therefore dx = dt$

$$\Rightarrow \int x\sqrt{x+2} dx = \int (t-2)\sqrt{t} dt$$

= $\int \left(t^{\frac{3}{2}} - 2t^{\frac{1}{2}}\right) dt$
= $\int t^{\frac{3}{2}} dt - 2 \int t^{\frac{1}{2}} dt$
= $\frac{t^{\frac{5}{2}}}{\frac{5}{2}} - 2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$
= $\frac{2}{5}t^{\frac{5}{2}} - \frac{4}{3}t^{\frac{3}{2}} + C$
= $\frac{2}{5}(x+2)^{\frac{5}{2}} - \frac{4}{3}(x+2)^{\frac{3}{2}} + C$

Question 8:

 $x\sqrt{1+2x^2}$

Answer

Let $1 + 2x^2 = t$

:: 4xdx = dt

$$\Rightarrow \int x\sqrt{1+2x^2} dx = \int \frac{\sqrt{t}dt}{4}$$
$$= \frac{1}{4} \int t^{\frac{1}{2}} dt$$
$$= \frac{1}{4} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$$
$$= \frac{1}{6} \left(1+2x^2\right)^{\frac{3}{2}} + C$$

Question 9:

$$(4x+2)\sqrt{x^2+x+1}$$

Answer

Let $x^2 + x + 1 = t$

 $\therefore (2x+1)dx = dt$

$$\int (4x+2)\sqrt{x^2+x+1} dx$$
$$= \int 2\sqrt{t} dt$$
$$= 2 \int \sqrt{t} dt$$
$$= 2 \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$$
$$= \frac{4}{3} \left(x^2+x+1\right)^{\frac{3}{2}} + C$$

Question 10:

$$\frac{1}{x - \sqrt{x}}$$
Answer
$$\frac{1}{x - \sqrt{x}} = \frac{1}{\sqrt{x}(\sqrt{x} - 1)}$$
Let $(\sqrt{x} - 1) = t$

$$\frac{1}{\sqrt{x}(\sqrt{x} - 1)} = t$$

$$\frac{1}{2\sqrt{x}}dx = 0$$

$$\Rightarrow \int \frac{1}{\sqrt{x} \left(\sqrt{x} - 1\right)} dx = \int \frac{2}{t} dt$$
$$= 2 \log|t| + C$$
$$= 2 \log\left|\sqrt{x} - 1\right| + C$$

Question 11:

$$\frac{x}{\sqrt{x+4}}, x > 0$$

Answer

Let x+4=t

$$\therefore dx = dt$$

$$\int \frac{x}{\sqrt{x+4}} dx = \int \frac{(t-4)}{\sqrt{t}} dt$$

= $\int \left(\sqrt{t} - \frac{4}{\sqrt{t}}\right) dt$
= $\frac{t^{\frac{3}{2}}}{\frac{3}{2}} - 4 \left(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right) + C$
= $\frac{2}{3}(t)^{\frac{3}{2}} - 8(t)^{\frac{1}{2}} + C$
= $\frac{2}{3}t \cdot t^{\frac{1}{2}} - 8t^{\frac{1}{2}} + C$
= $\frac{2}{3}t \cdot t^{\frac{1}{2}} - 8t^{\frac{1}{2}} + C$
= $\frac{2}{3}t^{\frac{1}{2}}(t-12) + C$
= $\frac{2}{3}(x+4)^{\frac{1}{2}}(x+4-12) + C$
= $\frac{2}{3}\sqrt{x+4}(x-8) + C$

Question 12:

$$(x^3-1)^{\frac{1}{3}}x^5$$

Answer

Let $x^3 - 1 = t$

$$\therefore 3x^2 dx = dt$$

$$\Rightarrow \int (x^3 - 1)^{\frac{1}{3}} x^5 dx = \int (x^3 - 1)^{\frac{1}{3}} x^3 \cdot x^2 dx$$

$$= \int t^{\frac{1}{3}} (t + 1) \frac{dt}{3}$$

$$= \frac{1}{3} \int \left(t^{\frac{4}{3}} + t^{\frac{1}{3}} \right) dt$$

$$= \frac{1}{3} \left[\frac{t^{\frac{7}{3}}}{\frac{7}{3}} + \frac{t^{\frac{4}{3}}}{\frac{4}{3}} \right] + C$$

$$= \frac{1}{3} \left[\frac{3}{7} t^{\frac{7}{3}} + \frac{3}{4} t^{\frac{4}{3}} \right] + C$$

$$= \frac{1}{7} (x^3 - 1)^{\frac{7}{3}} + \frac{1}{4} (x^3 - 1)^{\frac{4}{3}} + C$$

Question 13:

$$\frac{x^2}{\left(2+3x^3\right)^3}$$

Answer

Let $2 + 3x^3 = t$

 $\therefore 9x^2 dx = dt$

$$\Rightarrow \int \frac{x^2}{(2+3x^3)^3} dx = \frac{1}{9} \int \frac{dt}{(t)^3}$$
$$= \frac{1}{9} \left[\frac{t^{-2}}{-2} \right] + C$$
$$= \frac{-1}{18} \left(\frac{1}{t^2} \right) + C$$
$$= \frac{-1}{18 (2+3x^3)^2} + C$$

Question 14:

$$\frac{1}{x(\log x)^m} \ , \ x > 0$$

Answer

Let $\log x = t$

$$\frac{1}{x}dx = dt$$

$$\Rightarrow \int \frac{1}{x (\log x)^m} dx = \int \frac{dt}{(t)^m}$$
$$= \left(\frac{t^{-m+1}}{1-m}\right) + C$$
$$= \frac{(\log x)^{1-m}}{(1-m)} + C$$

Question 15:

$$\frac{x}{9-4x^2}$$

Answer

Let $9 - 4x^2 = t$

 $\therefore -8x \, dx = dt$

$$\Rightarrow \int \frac{x}{9-4x^2} dx = \frac{-1}{8} \int \frac{1}{t} dt$$
$$= \frac{-1}{8} \log|t| + C$$
$$= \frac{-1}{8} \log|9-4x^2| + C$$

Question 16:

 e^{2x+3}

Answer

Let 2x+3=t

 $\therefore 2dx = dt$

$$\Rightarrow \int e^{2x+3} dx = \frac{1}{2} \int e^{t} dt$$
$$= \frac{1}{2} \left(e^{t} \right) + C$$
$$= \frac{1}{2} e^{(2x+3)} + C$$

Question 17:

$$\frac{x}{e^{x^2}}$$

Answer

Let $x^2 = t$

 $\therefore 2xdx = dt$

$$\Rightarrow \int \frac{x}{e^{x^2}} dx = \frac{1}{2} \int \frac{1}{e^t} dt$$
$$= \frac{1}{2} \int e^{-t} dt$$
$$= \frac{1}{2} \left(\frac{e^{-t}}{-1} \right) + C$$
$$= -\frac{1}{2} e^{-x^2} + C$$
$$= \frac{-1}{2e^{x^2}} + C$$

Question 18: $\frac{e^{\tan^{-1}x}}{1+x^2}$ Answer Let $\tan^{-1}x = t$ $\frac{1}{x^2} dx = dt$

$$\Rightarrow \int \frac{e^{\tan^{-1}x}}{1+x^2} dx = \int e^t dt$$
$$= e^t + C$$
$$= e^{\tan^{-1}x} + C$$

Question 19:

$$\frac{e^{2x}-1}{e^{2x}+1}$$

Answer

$$\frac{e^{2x}-1}{e^{2x}+1}$$

Dividing numerator and denominator by e^x , we obtain

$$\frac{\frac{\left(e^{2x}-1\right)}{e^{x}}}{\frac{\left(e^{2x}+1\right)}{e^{x}}} = \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$$

Let $e^x + e^{-x} = t$

$$\frac{1}{x}\left(e^{x}-e^{-x}\right)dx=dt$$

$$\Rightarrow \int \frac{e^{2x} - 1}{e^{2x} + 1} dx = \int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$
$$= \int \frac{dt}{t}$$
$$= \log|t| + C$$
$$= \log|e^x + e^{-x}| + C$$

Question 20:

$$\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$$

Answer

Let
$$e^{2x} + e^{-2x} = t$$

$$\therefore \left(2e^{2x}-2e^{-2x}\right)dx = dt$$

$$\Rightarrow 2\left(e^{2x} - e^{-2x}\right)dx = dt$$
$$\Rightarrow \int \left(\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}\right)dx = \int \frac{dt}{2t}$$
$$= \frac{1}{2}\int \frac{1}{t}dt$$
$$= \frac{1}{2}\log|t| + C$$
$$= \frac{1}{2}\log|e^{2x} + e^{-2x}| + C$$

Question 21:

 $\tan^2(2x-3)$

Answer

 $\tan^{2}(2x-3) = \sec^{2}(2x-3)-1$ Let 2x - 3 = t

 $\therefore 2dx = dt$

$$\Rightarrow \int \tan^2 (2x-3) dx = \int \left[\left(\sec^2 (2x-3) \right) - 1 \right] dx$$
$$= \frac{1}{2} \int \left(\sec^2 t \right) dt - \int 1 dx$$
$$= \frac{1}{2} \int \sec^2 t \, dt - \int 1 dx$$
$$= \frac{1}{2} \tan t - x + C$$
$$= \frac{1}{2} \tan (2x-3) - x + C$$

$$\sec^2(7-4x)$$

Answer

Let 7 - 4x = t

 $\therefore -4dx = dt$

$$\therefore \int \sec^2 (7 - 4x) dx = \frac{-1}{4} \int \sec^2 t \, dt$$
$$= \frac{-1}{4} (\tan t) + C$$
$$= \frac{-1}{4} \tan (7 - 4x) + C$$

Question 23:

$$\frac{\sin^{-1}x}{\sqrt{1-x^2}}$$

Answer

Let $\sin^{-1} x = t$

$$\frac{1}{\sqrt{1-x^2}}dx = dt$$

$$\Rightarrow \int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} dx = \int t dt$$
$$= \frac{t^2}{2} + C$$
$$= \frac{\left(\sin^{-1} x\right)^2}{2} + C$$

Question 24:

 $\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x}$

Answer

 $\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x} = \frac{2\cos x - 3\sin x}{2(3\cos x + 2\sin x)}$

Let $3\cos x + 2\sin x = t$

$$(-3\sin x + 2\cos x)dx = dt$$

$$\int \frac{2\cos x - 3\sin x}{6\cos x + 4\sin x} dx = \int \frac{dt}{2t}$$
$$= \frac{1}{2} \int \frac{1}{t} dt$$
$$= \frac{1}{2} \log|t| + C$$
$$= \frac{1}{2} \log|2\sin x + 3\cos x| + C$$

Question 25:

$$\frac{1}{\cos^2 x \left(1 - \tan x\right)^2}$$

Answer

$$\frac{1}{\cos^2 x (1 - \tan x)^2} = \frac{\sec^2 x}{(1 - \tan x)^2}$$

Let $(1 - \tan x) = t$

$$\therefore -\sec^2 x dx = dt$$

$$\Rightarrow \int \frac{\sec^2 x}{\left(1 - \tan x\right)^2} dx = \int \frac{-dt}{t^2}$$
$$= -\int t^{-2} dt$$
$$= +\frac{1}{t} + C$$
$$= \frac{1}{\left(1 - \tan x\right)} + C$$

Question 26:

 $\frac{\cos\sqrt{x}}{\sqrt{x}}$ Answer
Let $\sqrt{x} = t$ $\frac{1}{2\sqrt{x}} dx = dt$

$$\Rightarrow \int \frac{\cos \sqrt{x}}{\sqrt{x}} dx = 2 \int \cos t \, dt$$
$$= 2 \sin t + C$$
$$= 2 \sin \sqrt{x} + C$$

Question 27:

 $\sqrt{\sin 2x} \cos 2x$

Answer

Let sin 2x = t

 $\therefore 2\cos 2x \, dx = dt$

$$\Rightarrow \int \sqrt{\sin 2x} \, \cos 2x \, dx = \frac{1}{2} \int \sqrt{t} \, dt$$
$$= \frac{1}{2} \left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right) + C$$
$$= \frac{1}{3} t^{\frac{3}{2}} + C$$
$$= \frac{1}{3} (\sin 2x)^{\frac{3}{2}} + C$$

Question 28:

$\frac{\cos x}{\sqrt{1+\sin x}}$

Answer

Let $1 + \sin x = t$

 $\therefore \cos x \, dx = dt$

$$\Rightarrow \int \frac{\cos x}{\sqrt{1 + \sin x}} dx = \int \frac{dt}{\sqrt{t}}$$
$$= \frac{t^{\frac{1}{2}}}{\frac{1}{2}} + C$$
$$= 2\sqrt{t} + C$$
$$= 2\sqrt{1 + \sin x} + C$$

Question 29:

 $\cot x \log \sin x$

Answer

Let $\log \sin x = t$

$$\Rightarrow \frac{1}{\sin x} \cdot \cos x \, dx = dt$$
$$\therefore \cot x \, dx = dt$$

$$\Rightarrow \int \cot x \, \log \sin x \, dx = \int t \, dt$$
$$= \frac{t^2}{2} + C$$
$$= \frac{1}{2} (\log \sin x)^2 + C$$

Question 30:
$$\frac{\sin x}{1 + \cos x}$$

Answer

Let $1 + \cos x = t$

 $\therefore -\sin x \, dx = dt$

$$\Rightarrow \int \frac{\sin x}{1 + \cos x} \, dx = \int -\frac{dt}{t}$$
$$= -\log|t| + C$$
$$= -\log|1 + \cos x| + C$$

Question 31:

$$\frac{\sin x}{\left(1+\cos x\right)^2}$$

Answer

Let $1 + \cos x = t$

 $\therefore -\sin x \, dx = dt$

$$\Rightarrow \int \frac{\sin x}{\left(1 + \cos x\right)^2} dx = \int -\frac{dt}{t^2}$$
$$= -\int t^{-2} dt$$
$$= \frac{1}{t} + C$$
$$= \frac{1}{1 + \cos x} + C$$

Question 32:

1 $1 + \cot x$ Answer

Let
$$I = \int \frac{1}{1 + \cot x} dx$$

$$= \int \frac{1}{1 + \frac{\cos x}{\sin x}} dx$$

$$= \int \frac{\sin x}{\sin x + \cos x} dx$$

$$= \frac{1}{2} \int \frac{2 \sin x}{\sin x + \cos x} dx$$

$$= \frac{1}{2} \int \frac{(\sin x + \cos x) + (\sin x - \cos x)}{(\sin x + \cos x)} dx$$

$$= \frac{1}{2} \int 1 dx + \frac{1}{2} \int \frac{\sin x - \cos x}{\sin x + \cos x} dx$$

$$= \frac{1}{2} (x) + \frac{1}{2} \int \frac{\sin x - \cos x}{\sin x + \cos x} dx$$

Let $\sin x + \cos x = t \Rightarrow (\cos x - \sin x) dx = dt$

$$\therefore I = \frac{x}{2} + \frac{1}{2} \int \frac{-(dt)}{t}$$
$$= \frac{x}{2} - \frac{1}{2} \log|t| + C$$
$$= \frac{x}{2} - \frac{1}{2} \log|\sin x + \cos x| + C$$

Question 33:

$$\frac{1}{1 - \tan x}$$
Answer

Let
$$I = \int \frac{1}{1 - \tan x} dx$$

$$= \int \frac{1}{1 - \frac{\sin x}{\cos x}} dx$$

$$= \int \frac{\cos x}{\cos x - \sin x} dx$$

$$= \frac{1}{2} \int \frac{2 \cos x}{\cos x - \sin x} dx$$

$$= \frac{1}{2} \int \frac{(\cos x - \sin x) + (\cos x + \sin x)}{(\cos x - \sin x)} dx$$

$$= \frac{1}{2} \int 1 dx + \frac{1}{2} \int \frac{\cos x + \sin x}{\cos x - \sin x} dx$$

$$= \frac{x}{2} + \frac{1}{2} \int \frac{\cos x + \sin x}{\cos x - \sin x} dx$$

Put $\cos x - \sin x = t \Rightarrow (-\sin x - \cos x) dx = dt$

$$\therefore I = \frac{x}{2} + \frac{1}{2} \int \frac{-(dt)}{t}$$
$$= \frac{x}{2} - \frac{1}{2} \log|t| + C$$
$$= \frac{x}{2} - \frac{1}{2} \log|\cos x - \sin x| + C$$

Question 34:

$$\frac{\sqrt{\tan x}}{\sin x \cos x}$$

Answer

Let
$$I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$$

$$= \int \frac{\sqrt{\tan x} \times \cos x}{\sin x \cos x \times \cos x} dx$$

$$= \int \frac{\sqrt{\tan x}}{\tan x \cos^2 x} dx$$

$$= \int \frac{\sec^2 x \, dx}{\sqrt{\tan x}}$$
Let $\tan x = t \implies \sec^2 x \, dx = dt$

$$\therefore I = \int \frac{dt}{\sqrt{t}}$$

$$= 2\sqrt{t} + C$$

$$= 2\sqrt{\tan x} + C$$

Question 35:

$$\frac{\left(1+\log x\right)^2}{x}$$

Answer

Let 1 + log x = t

$$\frac{1}{-}dx = dt$$

$$\frac{1}{x}dx =$$

$$\Rightarrow \int \frac{\left(1 + \log x\right)^2}{x} dx = \int t^2 dt$$
$$= \frac{t^3}{3} + C$$
$$= \frac{\left(1 + \log x\right)^3}{3} + C$$

Question 36:

$$\frac{(x+1)(x+\log x)^2}{x}$$

Answer

$$\frac{(x+1)(x+\log x)^2}{x} = \left(\frac{x+1}{x}\right)(x+\log x)^2 = \left(1+\frac{1}{x}\right)(x+\log x)^2$$

Let $\left(x+\log x\right) = t$
 $\therefore \left(1+\frac{1}{x}\right)dx = dt$

$$\Rightarrow \int \left(1 + \frac{1}{x}\right) (x + \log x)^2 dx = \int t^2 dt$$
$$= \frac{t^3}{3} + C$$
$$= \frac{1}{3} (x + \log x)^3 + C$$

Question 37:

$$\frac{x^3 \sin\left(\tan^{-1} x^4\right)}{1+x^8}$$

Answer Let $x^4 = t$

 $\therefore 4x^3 dx = dt$

Class XII

$$\Rightarrow \int \frac{x^3 \sin\left(\tan^{-1} x^4\right)}{1+x^8} dx = \frac{1}{4} \int \frac{\sin\left(\tan^{-1} t\right)}{1+t^2} dt \qquad \dots(1)$$
Let $\tan^{-1} t = u$
 $\therefore \frac{1}{1+t^2} dt = du$

From (1), we obtain

$$\int \frac{x^3 \sin(\tan^{-1} x^4) dx}{1 + x^8} = \frac{1}{4} \int \sin u \, du$$
$$= \frac{1}{4} (-\cos u) + C$$
$$= \frac{-1}{4} \cos(\tan^{-1} t) + C$$
$$= \frac{-1}{4} \cos(\tan^{-1} x^4) + C$$

Question 38

$$\int \frac{10x^9 + 10^x \log_e 10}{x^{10} + 10^x} dx$$

equals
(A) $10^x - x^{10} + C$ (B) $10^x + x^{10} + C$
(C) $(10^x - x^{10})^{-1} + C$ (D) $\log(10^x + x^{10}) + C$

(C)
$$(10^{x} - x^{10})^{-1} + C$$
 (D) $\log(10^{x} + x^{10}) + C$

Let $x^{10} + 10^x = t$

 $\therefore \left(10x^9 + 10^x \log_e 10\right) dx = dt$

(C)
$$(10^{x} - x^{10})^{-1} + C$$
 (D) $\log(10^{x} + x^{10}) + C$

uestion 38:

$$\frac{10x^9 + 10^x \log_e 10}{x^{10} + 10^x} dx$$
equals

$$\Rightarrow \int \frac{10x^9 + 10^x \log_e 10}{x^{10} + 10^x} dx = \int \frac{dt}{t}$$
$$= \log t + C$$
$$= \log (10^x + x^{10}) + C$$

Hence, the correct Answer is D.

Question 39:

$$\int \frac{dx}{\sin^2 x \cos^2 x} equals$$

A.
$$\tan x + \cot x + C$$

- **B.** $\tan x \cot x + C$
- **c.** $\tan x \cot x + C$
- **D.** $\tan x \cot 2x + C$

Answer

Let
$$I = \int \frac{dx}{\sin^2 x \cos^2 x}$$

$$= \int \frac{1}{\sin^2 x \cos^2 x} dx$$

$$= \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx$$

$$= \int \frac{\sin^2 x}{\sin^2 x \cos^2 x} dx + \int \frac{\cos^2 x}{\sin^2 x \cos^2 x} dx$$

$$= \int \sec^2 x dx + \int \csc^2 x dx$$

$$= \tan x - \cot x + C$$

Hence, the correct Answer is B.