Exercise 7.3

Question 1:

 $\sin^2(2x+5)$

Answer

$$\sin^{2}(2x+5) = \frac{1-\cos 2(2x+5)}{2} = \frac{1-\cos (4x+10)}{2}$$
$$\Rightarrow \int \sin^{2}(2x+5) dx = \int \frac{1-\cos (4x+10)}{2} dx$$
$$= \frac{1}{2} \int 1 dx - \frac{1}{2} \int \cos (4x+10) dx$$
$$= \frac{1}{2} x - \frac{1}{2} \left(\frac{\sin (4x+10)}{4} \right) + C$$
$$= \frac{1}{2} x - \frac{1}{8} \sin (4x+10) + C$$

Question 2:

 $\sin 3x \cos 4x$

$$\sin A \cos B = \frac{1}{2} \left\{ \sin \left(A + B \right) + \sin \left(A - B \right) \right\}$$

$$\therefore \int \sin 3x \cos 4x \, dx = \frac{1}{2} \int \{\sin (3x + 4x) + \sin (3x - 4x)\} \, dx$$
$$= \frac{1}{2} \int \{\sin 7x + \sin (-x)\} \, dx$$
$$= \frac{1}{2} \int \{\sin 7x - \sin x\} \, dx$$
$$= \frac{1}{2} \int \sin 7x \, dx - \frac{1}{2} \int \sin x \, dx$$
$$= \frac{1}{2} \left(\frac{-\cos 7x}{7}\right) - \frac{1}{2} (-\cos x) + C$$
$$= \frac{-\cos 7x}{14} + \frac{\cos x}{2} + C$$

Question 3: cos 2*x* cos 4*x* cos 6*x* Answer

 $\cos A \cos B = \frac{1}{2} \left\{ \cos \left(A + B\right) + \cos \left(A - B\right) \right\}$ It is known that,

$$\therefore \int \cos 2x (\cos 4x \cos 6x) dx = \int \cos 2x \left[\frac{1}{2} \{ \cos (4x + 6x) + \cos (4x - 6x) \} \right] dx$$

$$= \frac{1}{2} \int \{ \cos 2x \cos 10x + \cos 2x \cos (-2x) \} dx$$

$$= \frac{1}{2} \int \{ \cos 2x \cos 10x + \cos^2 2x \} dx$$

$$= \frac{1}{2} \int \left[\left\{ \frac{1}{2} \cos (2x + 10x) + \cos (2x - 10x) \right\} + \left(\frac{1 + \cos 4x}{2} \right) \right] dx$$

$$= \frac{1}{4} \int (\cos 12x + \cos 8x + 1 + \cos 4x) dx$$

$$= \frac{1}{4} \left[\frac{\sin 12x}{12} + \frac{\sin 8x}{8} + x + \frac{\sin 4x}{4} \right] + C$$

Question 4:

$$\sin^{3} (2x + 1)$$
Answer
Let $I = \int \sin^{3} (2x+1)$
 $\Rightarrow \int \sin^{3} (2x+1) dx = \int \sin^{2} (2x+1) \cdot \sin (2x+1) dx$
 $= \int (1 - \cos^{2} (2x+1)) \sin (2x+1) dx$
Let $\cos (2x+1) = t$
 $\Rightarrow -2 \sin (2x+1) dx = dt$
 $\Rightarrow \sin (2x+1) dx = \frac{-dt}{2}$

$$\Rightarrow I = \frac{-1}{2} \int (1 - t^2) dt$$
$$= \frac{-1}{2} \left\{ t - \frac{t^3}{3} \right\}$$
$$= \frac{-1}{2} \left\{ \cos(2x + 1) - \frac{\cos^3(2x + 1)}{3} \right\}$$
$$= \frac{-\cos(2x + 1)}{2} + \frac{\cos^3(2x + 1)}{6} + C$$

Question 5:

 $\sin^3 x \cos^3 x$

Answer

Let
$$I = \int \sin^3 x \cos^3 x \cdot dx$$

= $\int \cos^3 x \cdot \sin^2 x \cdot \sin x \cdot dx$
= $\int \cos^3 x (1 - \cos^2 x) \sin x \cdot dx$

Let $\cos x = t$

$$\Rightarrow -\sin x \cdot dx = dt$$

$$\Rightarrow I = -\int t^3 (1 - t^2) dt$$

$$= -\int (t^3 - t^5) dt$$

$$= -\left\{\frac{t^4}{4} - \frac{t^6}{6}\right\} + C$$

$$= -\left\{\frac{\cos^4 x}{4} - \frac{\cos^6 x}{6}\right\} + C$$

$$= \frac{\cos^6 x}{6} - \frac{\cos^4 x}{4} + C$$

Question 6:

 $\sin x \sin 2x \sin 3x$ Answer

sin
$$A \sin B = \frac{1}{2} \{ \cos(A - B) - \cos(A + B) \}$$

It is known that,
 $\therefore \int \sin x \sin 2x \sin 3x \, dx = \int \left[\sin x \cdot \frac{1}{2} \{ \cos(2x - 3x) - \cos(2x + 3x) \} \right] dx$
 $= \frac{1}{2} \int (\sin x \cos(-x) - \sin x \cos 5x) \, dx$
 $= \frac{1}{2} \int (\sin x \cos x - \sin x \cos 5x) \, dx$
 $= \frac{1}{2} \int \frac{\sin 2x}{2} \, dx - \frac{1}{2} \int \sin x \cos 5x \, dx$
 $= \frac{1}{4} \left[\frac{-\cos 2x}{2} \right] - \frac{1}{2} \int \left\{ \frac{1}{2} \sin(x + 5x) + \sin(x - 5x) \right\} \, dx$
 $= \frac{-\cos 2x}{8} - \frac{1}{4} \int (\sin 6x + \sin(-4x)) \, dx$
 $= \frac{-\cos 2x}{8} - \frac{1}{4} \left[\frac{-\cos 6x}{3} + \frac{\cos 4x}{4} \right] + C$
 $= \frac{-\cos 2x}{8} - \frac{1}{8} \left[\frac{-\cos 6x}{3} + \frac{\cos 4x}{2} \right] + C$
 $= \frac{1}{8} \left[\frac{\cos 6x}{3} - \frac{\cos 4x}{2} - \cos 2x \right] + C$

Question 7:

 $\sin 4x \sin 8x$

Answer

 $\sin A \sin B = \frac{1}{2} \cos (A - B) - \cos (A + B)$ It is known that,

$$\therefore \int \sin 4x \sin 8x \, dx = \int \left\{ \frac{1}{2} \cos \left(4x - 8x \right) - \cos \left(4x + 8x \right) \right\} \, dx$$
$$= \frac{1}{2} \int \left(\cos \left(-4x \right) - \cos 12x \right) \, dx$$
$$= \frac{1}{2} \int \left(\cos 4x - \cos 12x \right) \, dx$$
$$= \frac{1}{2} \left[\frac{\sin 4x}{4} - \frac{\sin 12x}{12} \right]$$

Question 8:

 $1 - \cos x$

 $1 + \cos x$

Answer

$$\frac{1-\cos x}{1+\cos x} = \frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}} \qquad \left[2\sin^2 \frac{x}{2} = 1 - \cos x \text{ and } 2\cos^2 \frac{x}{2} = 1 + \cos x \right]$$
$$= \tan^2 \frac{x}{2}$$
$$= \left(\sec^2 \frac{x}{2} - 1\right)$$
$$\therefore \int \frac{1-\cos x}{1+\cos x} dx = \int \left(\sec^2 \frac{x}{2} - 1\right) dx$$
$$= \left[\frac{\tan \frac{x}{2}}{1} - x\right] + C$$
$$= 2\tan \frac{x}{2} - x + C$$

Question 9:

 $\frac{\cos x}{1 + \cos x}$ Answer

$$\frac{\cos x}{1+\cos x} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}} \qquad \left[\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \text{ and } \cos x = 2\cos^2 \frac{x}{2} - 1 \right]$$
$$= \frac{1}{2} \left[1 - \tan^2 \frac{x}{2} \right]$$
$$\therefore \int \frac{\cos x}{1+\cos x} dx = \frac{1}{2} \int \left(1 - \tan^2 \frac{x}{2} \right) dx$$
$$= \frac{1}{2} \int \left(1 - \sec^2 \frac{x}{2} + 1 \right) dx$$
$$= \frac{1}{2} \int \left(2 - \sec^2 \frac{x}{2} \right) dx$$
$$= \frac{1}{2} \left[2x - \frac{\tan \frac{x}{2}}{\frac{1}{2}} \right] + C$$
$$= x - \tan \frac{x}{2} + C$$

Question 10: sin⁴ x

$$\sin^{4} x = \sin^{2} x \sin^{2} x$$

$$= \left(\frac{1-\cos 2x}{2}\right) \left(\frac{1-\cos 2x}{2}\right)$$

$$= \frac{1}{4} (1-\cos 2x)^{2}$$

$$= \frac{1}{4} \left[1+\cos^{2} 2x - 2\cos 2x\right]$$

$$= \frac{1}{4} \left[1+\left(\frac{1+\cos 4x}{2}\right) - 2\cos 2x\right]$$

$$= \frac{1}{4} \left[1+\frac{1}{2}+\frac{1}{2}\cos 4x - 2\cos 2x\right]$$

$$= \frac{1}{4} \left[\frac{3}{2}+\frac{1}{2}\cos 4x - 2\cos 2x\right]$$

$$\therefore \int \sin^{4} x \, dx = \frac{1}{4} \int \left[\frac{3}{2}+\frac{1}{2}\cos 4x - 2\cos 2x\right] dx$$

$$= \frac{1}{4} \left[\frac{3}{2}x+\frac{1}{2}\left(\frac{\sin 4x}{4}\right) - \frac{2\sin 2x}{2}\right] + C$$

$$= \frac{1}{8} \left[3x+\frac{\sin 4x}{4}-2\sin 2x\right] + C$$

$$= \frac{3x}{8} - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C$$

Question 11: cos⁴ 2*x* Answer

$$\cos^{4} 2x = (\cos^{2} 2x)^{2}$$

$$= \left(\frac{1+\cos 4x}{2}\right)^{2}$$

$$= \frac{1}{4} \left[1+\cos^{2} 4x+2\cos 4x\right]$$

$$= \frac{1}{4} \left[1+\left(\frac{1+\cos 8x}{2}\right)+2\cos 4x\right]$$

$$= \frac{1}{4} \left[1+\frac{1}{2}+\frac{\cos 8x}{2}+2\cos 4x\right]$$

$$= \frac{1}{4} \left[\frac{3}{2}+\frac{\cos 8x}{2}+2\cos 4x\right]$$

Question 12:

$$\frac{\sin^2 x}{1 + \cos x}$$

$$\frac{\sin^2 x}{1 + \cos x} = \frac{\left(2\sin\frac{x}{2}\cos\frac{x}{2}\right)^2}{2\cos^2\frac{x}{2}} \left[\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}; \cos x = 2\cos^2\frac{x}{2} - 1\right]$$
$$= \frac{4\sin^2\frac{x}{2}\cos^2\frac{x}{2}}{2\cos^2\frac{x}{2}}$$
$$= 2\sin^2\frac{x}{2}$$
$$= 2\sin^2\frac{x}{2}$$
$$= 1 - \cos x$$
$$\therefore \int \frac{\sin^2 x}{1 + \cos x} dx = \int (1 - \cos x) dx$$
$$= x - \sin x + C$$

Question 13:

 $\cos 2x - \cos 2\alpha$

 $\cos x - \cos \alpha$

Answer

$$\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} = \frac{-2\sin \frac{2x + 2\alpha}{2} \sin \frac{2x - 2\alpha}{2}}{-2\sin \frac{x + \alpha}{2} \sin \frac{x - \alpha}{2}} \qquad \left[\cos C - \cos D = -2\sin \frac{C + D}{2} \sin \frac{C - D}{2} \right] \right]$$
$$= \frac{\sin(x + \alpha)\sin(x - \alpha)}{\sin\left(\frac{x + \alpha}{2}\right)\sin\left(\frac{x - \alpha}{2}\right)}$$
$$= \frac{\left[2\sin\left(\frac{x + \alpha}{2}\right)\cos\left(\frac{x + \alpha}{2}\right)\right] \left[2\sin\left(\frac{x - \alpha}{2}\right)\cos\left(\frac{x - \alpha}{2}\right)\right]}{\sin\left(\frac{x + \alpha}{2}\right)\sin\left(\frac{x - \alpha}{2}\right)}$$
$$= 4\cos\left(\frac{x + \alpha}{2}\right)\cos\left(\frac{x - \alpha}{2}\right)$$
$$= 2\left[\cos\left(\frac{x + \alpha}{2} + \frac{x - \alpha}{2}\right) + \cos\frac{x + \alpha}{2} - \frac{x - \alpha}{2}\right]$$
$$= 2\left[\cos(x) + \cos\alpha\right]$$
$$= 2\cos x + 2\cos\alpha$$
$$\therefore \int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos\alpha} dx = \int 2\cos x + 2\cos\alpha$$
$$= 2\left[\sin x + x\cos\alpha\right] + C$$

Question 14:

 $\frac{\cos x - \sin x}{1 + \sin 2x}$

 $\frac{\cos x - \sin x}{1 + \sin 2x} = \frac{\cos x - \sin x}{(\sin^2 x + \cos^2 x) + 2\sin x \cos x}$ $\begin{bmatrix} \sin^2 x + \cos^2 x = 1; \ \sin 2x = 2\sin x \cos x \end{bmatrix}$ $= \frac{\cos x - \sin x}{(\sin x + \cos x)^2}$ Let $\sin x + \cos x = t$ $\therefore (\cos x - \sin x) dx = dt$ $\Rightarrow \int \frac{\cos x - \sin x}{1 + \sin 2x} dx = \int \frac{\cos x - \sin x}{(\sin x + \cos x)^2} dx$ $= \int \frac{dt}{t^2}$ $= \int t^{-2} dt$ $= -t^{-1} + C$ $= -\frac{1}{t} + C$ $= -\frac{1}{\sin x + \cos x} + C$

Question 15:

 $\tan^3 2x \sec 2x$

$$\tan^{3} 2x \sec 2x = \tan^{2} 2x \tan 2x \sec 2x$$
$$= (\sec^{2} 2x - 1) \tan 2x \sec 2x$$
$$= \sec^{2} 2x \cdot \tan 2x \sec 2x - \tan 2x \sec 2x$$
$$\therefore \int \tan^{3} 2x \sec 2x \, dx = \int \sec^{2} 2x \tan 2x \sec 2x \, dx - \int \tan 2x \sec 2x \, dx$$
$$= \int \sec^{2} 2x \tan 2x \sec 2x \, dx - \frac{\sec 2x}{2} + C$$

Let $\sec 2x = t$

 $\therefore 2 \sec 2x \tan 2x \, dx = dt$

$$\therefore \int \tan^3 2x \sec 2x \, dx = \frac{1}{2} \int t^2 dt - \frac{\sec 2x}{2} + C$$
$$= \frac{t^3}{6} - \frac{\sec 2x}{2} + C$$
$$= \frac{(\sec 2x)^3}{6} - \frac{\sec 2x}{2} + C$$

Question 16:

tan^4x

Answer

 $\tan^4 x$

 $= \tan^2 x \cdot \tan^2 x$ $= (\sec^2 x - 1) \tan^2 x$

 $= \sec^2 x \tan^2 x - \tan^2 x$

 $=\sec^2 x \tan^2 x - \left(\sec^2 x - 1\right)$

$$=\sec^2 x \tan^2 x - \sec^2 x + 1$$

$$\therefore \int \tan^4 x \, dx = \int \sec^2 x \tan^2 x \, dx - \int \sec^2 x \, dx + \int 1 \cdot dx$$
$$= \int \sec^2 x \tan^2 x \, dx - \tan x + x + C \qquad \dots(1)$$

Consider
$$\int \sec^2 x \tan^2 x \, dx$$

Let $\tan x = t \Rightarrow \sec^2 x \, dx = dt$
 $\Rightarrow \int \sec^2 x \tan^2 x \, dx = \int t^2 \, dt = \frac{t^3}{3} = \frac{\tan^3 x}{3}$

From equation (1), we obtain

$$\int \tan^4 x \, dx = \frac{1}{3} \tan^3 x - \tan x + x + C$$

Question 17:

 $\frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x}$

Answer

$$\frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} = \frac{\sin^3 x}{\sin^2 x \cos^2 x} + \frac{\cos^3 x}{\sin^2 x \cos^2 x}$$
$$= \frac{\sin x}{\cos^2 x} + \frac{\cos x}{\sin^2 x}$$
$$= \tan x \sec x + \cot x \csc x$$
$$\therefore \quad \int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} \, dx = \int (\tan x \sec x + \cot x \csc x) \, dx$$

$$= \sec x - \csc x + C$$

Question 18:

$$\frac{\cos 2x + 2\sin^2 x}{\cos^2 x}$$

Answer

Question 19:

1

 $\sin x \cos^3 x$

Answer

$$\frac{1}{\sin x \cos^3 x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cos^3 x}$$
$$= \frac{\sin x}{\cos^3 x} + \frac{1}{\sin x \cos x}$$
$$= \tan x \sec^2 x + \frac{1 \cos^2 x}{\frac{\sin x \cos x}{\cos^2 x}}$$
$$= \tan x \sec^2 x + \frac{\sec^2 x}{\tan x}$$

$$\therefore \int \frac{1}{\sin x \cos^3 x} dx = \int \tan x \sec^2 x \, dx + \int \frac{\sec^2 x}{\tan x} \, dx$$

Let $\tan x = t \Rightarrow \sec^2 x \, dx = dt$
$$\Rightarrow \int \frac{1}{\sin x \cos^3 x} dx = \int t dt + \int \frac{1}{t} dt$$
$$= \frac{t^2}{2} + \log|t| + C$$
$$= \frac{1}{2} \tan^2 x + \log|\tan x| + C$$

Υ.

Question 20:

$$\frac{\cos 2x}{\left(\cos x + \sin x\right)^2}$$

$$\frac{\cos 2x}{\left(\cos x + \sin x\right)^2} = \frac{\cos 2x}{\cos^2 x + \sin^2 x + 2\sin x \cos x} = \frac{\cos 2x}{1 + \sin 2x}$$
$$\therefore \int \frac{\cos 2x}{\left(\cos x + \sin x\right)^2} dx = \int \frac{\cos 2x}{(1 + \sin 2x)} dx$$
Let $1 + \sin 2x = t$
$$\Rightarrow 2\cos 2x \, dx = dt$$
$$\therefore \int \frac{\cos 2x}{\left(\cos x + \sin x\right)^2} dx = \frac{1}{2} \int \frac{1}{t} dt$$
$$= \frac{1}{2} \log |t| + C$$
$$= \frac{1}{2} \log |t| + \sin 2x | + C$$
$$= \frac{1}{2} \log |(\sin x + \cos x)^2| + C$$
$$= \log |\sin x + \cos x| + C$$

Question 21: $\sin^{-1} (\cos x)$ Answer $\sin^{-1} (\cos x)$ Let $\cos x = t$ Then, $\sin x = \sqrt{1-t^2}$

$$\Rightarrow (-\sin x) dx = dt$$

$$dx = \frac{-dt}{\sin x}$$

$$dx = \frac{-dt}{\sqrt{1-t^2}}$$

$$\therefore \int \sin^{-1} (\cos x) dx = \int \sin^{-1} t \left(\frac{-dt}{\sqrt{1-t^2}}\right)$$

$$= -\int \frac{\sin^{-1} t}{\sqrt{1-t^2}} dt$$

Let $\sin^{-1} t = u$

$$\Rightarrow \frac{1}{\sqrt{1-t^2}} dt = du$$

$$\therefore \int \sin^{-1} (\cos x) dx = \int 4du$$

$$= -\frac{u^2}{2} + C$$

$$= \frac{-\left(\sin^{-1} t\right)^2}{2} + C$$

$$= \frac{-\left[\sin^{-1} (\cos x)\right]^2}{2} + C$$
....(1)

It is known that,

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

$$\therefore \sin^{-1} (\cos x) = \frac{\pi}{2} - \cos^{-1} (\cos x) = \left(\frac{\pi}{2} - x\right)$$

Substituting in equation (1), we obtain

$$\int \sin^{-1}(\cos x) \, dx = \frac{-\left[\frac{\pi}{2} - x\right]^2}{2} + C$$
$$= -\frac{1}{2} \left(\frac{\pi^2}{2} + x^2 - \pi x\right) + C$$
$$= -\frac{\pi^2}{8} - \frac{x^2}{2} + \frac{1}{2}\pi x + C$$
$$= \frac{\pi x}{2} - \frac{x^2}{2} + \left(C - \frac{\pi^2}{8}\right)$$
$$= \frac{\pi x}{2} - \frac{x^2}{2} + C_1$$

Question 22:

$$\frac{1}{\cos(x-a)\cos(x-b)}$$

Answer

$$\frac{1}{\cos(x-a)\cos(x-b)} = \frac{1}{\sin(a-b)} \left[\frac{\sin(a-b)}{\cos(x-a)\cos(x-b)} \right]$$
$$= \frac{1}{\sin(a-b)} \left[\frac{\sin[(x-b)-(x-a)]}{\cos(x-a)\cos(x-b)} \right]$$
$$= \frac{1}{\sin(a-b)} \frac{\left[\sin(x-b)\cos(x-a)-\cos(x-b)\sin(x-a)\right]}{\cos(x-a)\cos(x-b)}$$
$$= \frac{1}{\sin(a-b)} \left[\tan(x-b)-\tan(x-a)\right]$$

$$\Rightarrow \int \frac{1}{\cos(x-a)\cos(x-b)} dx = \frac{1}{\sin(a-b)} \int \left[\tan(x-b) - \tan(x-a) \right] dx$$
$$= \frac{1}{\sin(a-b)} \left[-\log|\cos(x-b)| + \log|\cos(x-a)| \right]$$
$$= \frac{1}{\sin(a-b)} \left[\log\left| \frac{\cos(x-a)}{\cos(x-b)} \right| \right] + C$$

Page 53 of 216

Question 23:

$$\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx$$

is equal to
A. $\tan x + \cot x + C$
B. $\tan x + \cot x + C$
C. $-\tan x + \cot x + C$
D. $\tan x + \sec x + C$
D. $\tan x + \sec x + C$
Answer
$$\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \left(\frac{\sin^2 x}{\sin^2 x \cos^2 x} - \frac{\cos^2 x}{\sin^2 x \cos^2 x}\right) dx$$
$$= \int (\sec^2 x - \csc^2 x) dx$$

 $= \tan x + \cot x + C$

Hence, the correct Answer is A.

Question 24: $\int \frac{e^{x}(1+x)}{\cos^{2}(e^{x}x)} dx$ equals A. - cot $(ex^{x}) + C$ B. tan $(xe^{x}) + C$ C. tan $(e^{x}) + C$ D. cot $(e^{x}) + C$ Answer $\int \frac{e^{x}(1+x)}{e^{x}(1+x)} dx$

$$\int \frac{dx}{\cos^2(e^x x)} dx$$

Let $ex^x = t$

$$\Rightarrow (e^{x} \cdot x + e^{x} \cdot 1) dx = dt$$
$$e^{x} (x+1) dx = dt$$
$$\therefore \int \frac{e^{x} (1+x)}{\cos^{2} (e^{x}x)} dx = \int \frac{dt}{\cos^{2} t}$$
$$= \int \sec^{2} t \ dt$$
$$= \tan t + C$$
$$= \tan (e^{x} \cdot x) + C$$

Hence, the correct Answer is B.