Question 1:
$\sin ^{2}(2 x+5)$
Answer

$$
\begin{aligned}
& \sin ^{2}(2 x+5)=\frac{1-\cos 2(2 x+5)}{2}=\frac{1-\cos (4 x+10)}{2} \\
& \begin{aligned}
\Rightarrow \int \sin ^{2}(2 x+5) d x & =\int \frac{1-\cos (4 x+10)}{2} d x \\
& =\frac{1}{2} \int 1 d x-\frac{1}{2} \int \cos (4 x+10) d x \\
& =\frac{1}{2} x-\frac{1}{2}\left(\frac{\sin (4 x+10)}{4}\right)+\mathrm{C} \\
& =\frac{1}{2} x-\frac{1}{8} \sin (4 x+10)+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 2:

$\sin 3 x \cos 4 x$
Answer
It is known that, $\sin A \cos B=\frac{1}{2}\{\sin (A+B)+\sin (A-B)\}$

$$
\begin{aligned}
\therefore \int \sin 3 x \cos 4 x d x & =\frac{1}{2} \int\{\sin (3 x+4 x)+\sin (3 x-4 x)\} d x \\
& =\frac{1}{2} \int\{\sin 7 x+\sin (-x)\} d x \\
& =\frac{1}{2} \int\{\sin 7 x-\sin x\} d x \\
& =\frac{1}{2} \int \sin 7 x d x-\frac{1}{2} \int \sin x d x \\
& =\frac{1}{2}\left(\frac{-\cos 7 x}{7}\right)-\frac{1}{2}(-\cos x)+\mathrm{C} \\
& =\frac{-\cos 7 x}{14}+\frac{\cos x}{2}+C
\end{aligned}
$$

Question 3:

$\cos 2 x \cos 4 x \cos 6 x$
Answer
It is known that, $\cos A \cos B=\frac{1}{2}\{\cos (A+B)+\cos (A-B)\}$

$$
\begin{aligned}
\therefore \int \cos 2 x(\cos 4 x \cos 6 x) d x & =\int \cos 2 x\left[\frac{1}{2}\{\cos (4 x+6 x)+\cos (4 x-6 x)\}\right] d x \\
& =\frac{1}{2} \int\{\cos 2 x \cos 10 x+\cos 2 x \cos (-2 x)\} d x \\
& =\frac{1}{2} \int\left\{\cos 2 x \cos 10 x+\cos ^{2} 2 x\right\} d x \\
& =\frac{1}{2} \int\left[\left\{\frac{1}{2} \cos (2 x+10 x)+\cos (2 x-10 x)\right\}+\left(\frac{1+\cos 4 x}{2}\right)\right] d x \\
& =\frac{1}{4} \int(\cos 12 x+\cos 8 x+1+\cos 4 x) d x \\
& =\frac{1}{4}\left[\frac{\sin 12 x}{12}+\frac{\sin 8 x}{8}+x+\frac{\sin 4 x}{4}\right]+C
\end{aligned}
$$

Question 4:
$\sin ^{3}(2 x+1)$
Answer
Let $I=\int \sin ^{3}(2 x+1)$
$\begin{aligned} \Rightarrow \int \sin ^{3}(2 x+1) d x & =\int \sin ^{2}(2 x+1) \cdot \sin (2 x+1) d x \\ & =\int\left(1-\cos ^{2}(2 x+1)\right) \sin (2 x+1) d x\end{aligned}$
Let $\cos (2 x+1)=t$
$\Rightarrow-2 \sin (2 x+1) d x=d t$
$\Rightarrow \sin (2 x+1) d x=\frac{-d t}{2}$

$$
\begin{aligned}
\Rightarrow I & =\frac{-1}{2} \int\left(1-t^{2}\right) d t \\
& =\frac{-1}{2}\left\{t-\frac{t^{3}}{3}\right\} \\
& =\frac{-1}{2}\left\{\cos (2 x+1)-\frac{\cos ^{3}(2 x+1)}{3}\right\} \\
& =\frac{-\cos (2 x+1)}{2}+\frac{\cos ^{3}(2 x+1)}{6}+\mathrm{C}
\end{aligned}
$$

Question 5:
$\sin ^{3} x \cos ^{3} x$
Answer

$$
\text { Let } \begin{aligned}
I & =\int \sin ^{3} x \cos ^{3} x \cdot d x \\
& =\int \cos ^{3} x \cdot \sin ^{2} x \cdot \sin x \cdot d x \\
& =\int \cos ^{3} x\left(1-\cos ^{2} x\right) \sin x \cdot d x
\end{aligned}
$$

Let $\cos x=t$
$\Rightarrow-\sin x \cdot d x=d t$
$\Rightarrow I=-\int t^{3}\left(1-t^{2}\right) d t$

$$
=-\int\left(t^{3}-t^{5}\right) d t
$$

$$
=-\left\{\frac{t^{4}}{4}-\frac{t^{6}}{6}\right\}+\mathrm{C}
$$

$$
=-\left\{\frac{\cos ^{4} x}{4}-\frac{\cos ^{6} x}{6}\right\}+\mathrm{C}
$$

$$
=\frac{\cos ^{6} x}{6}-\frac{\cos ^{4} x}{4}+\mathrm{C}
$$

Question 6:
$\sin x \sin 2 x \sin 3 x$
Answer

It is known that, $\sin A \sin B=\frac{1}{2}\{\cos (A-B)-\cos (A+B)\}$

$$
\begin{aligned}
\therefore \int \sin x \sin 2 x \sin 3 x d x & =\int\left[\sin x \cdot \frac{1}{2}\{\cos (2 x-3 x)-\cos (2 x+3 x)\}\right] d x \\
& =\frac{1}{2} \int(\sin x \cos (-x)-\sin x \cos 5 x) d x \\
& =\frac{1}{2} \int(\sin x \cos x-\sin x \cos 5 x) d x \\
& =\frac{1}{2} \int \frac{\sin 2 x}{2} d x-\frac{1}{2} \int \sin x \cos 5 x d x \\
& =\frac{1}{4}\left[\frac{-\cos 2 x}{2}\right]-\frac{1}{2} \int\left\{\frac{1}{2} \sin (x+5 x)+\sin (x-5 x)\right\} d x \\
& =\frac{-\cos 2 x}{8}-\frac{1}{4} \int(\sin 6 x+\sin (-4 x)) d x \\
& =\frac{-\cos 2 x}{8}-\frac{1}{4}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{4}\right]+\mathrm{C} \\
& =\frac{-\cos 2 x}{8}-\frac{1}{8}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{2}\right]+\mathrm{C} \\
& =\frac{1}{8}\left[\frac{\cos 6 x}{3}-\frac{\cos 4 x}{2}-\cos 2 x\right]+\mathrm{C}
\end{aligned}
$$

Question 7:

$\sin 4 x \sin 8 x$
Answer
It is known that, $\sin A \sin B=\frac{1}{2} \cos (A-B)-\cos (A+B)$

$$
\begin{aligned}
\therefore \int \sin 4 x \sin 8 x d x & =\int\left\{\frac{1}{2} \cos (4 x-8 x)-\cos (4 x+8 x)\right\} d x \\
& =\frac{1}{2} \int(\cos (-4 x)-\cos 12 x) d x \\
& =\frac{1}{2} \int(\cos 4 x-\cos 12 x) d x \\
& =\frac{1}{2}\left[\frac{\sin 4 x}{4}-\frac{\sin 12 x}{12}\right]
\end{aligned}
$$

Question 8:
$\frac{1-\cos x}{1+\cos x}$
Answer

$$
\begin{aligned}
& \begin{aligned}
\frac{1-\cos x}{1+\cos x} & =\frac{2 \sin ^{2} \frac{2}{2}}{2 \cos ^{2} \frac{2}{2}} \\
& =\tan ^{2} \frac{x}{2} \\
& =\left(\sec ^{2} \frac{x}{2}-1\right) \\
\therefore \int \frac{1-\cos x}{1+\cos x} d x & =\int\left(\sec ^{2} \frac{x}{2}-1\right) d x \\
& =\left[\frac{\tan \frac{x}{2}}{2}-x\right]+\mathrm{C}
\end{aligned} \\
& \\
& =
\end{aligned}
$$

Question 9:
$\frac{\cos x}{1+\cos x}$
Answer

$$
\begin{aligned}
& \left.\begin{array}{rl}
\frac{\cos x}{1+\cos x}= & \frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} \\
= & \frac{1}{2}\left[1-\tan ^{2} \frac{x}{2}\right] \\
\begin{array}{rl}
\therefore \int \frac{\cos x}{1+\cos x} d x & =\frac{1}{2} \int\left(1-\tan ^{2} \frac{x}{2}\right) d x \\
& =\frac{1}{2} \int\left(1-\sec ^{2} \frac{x}{2}+1\right) d x \\
& =\frac{1}{2} \int\left(2-\sec ^{2} \frac{x}{2}\right) d x \\
& =\frac{1}{2}\left[2 x-\frac{\left.\left.\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}-1\right] \cos x=2 \cos ^{2} \frac{x}{2}\right]+\mathrm{C}}{2}\right] \\
& =x-\tan \frac{x}{2}+\mathrm{C}
\end{array}
\end{array} . \quad \begin{array}{rl}
2
\end{array}\right]
\end{aligned}
$$

Question 10:
$\sin ^{4} x$
Answer

$$
\begin{aligned}
\sin ^{4} x= & \sin ^{2} x \sin ^{2} x \\
= & \left(\frac{1-\cos 2 x}{2}\right)\left(\frac{1-\cos 2 x}{2}\right) \\
= & \frac{1}{4}(1-\cos 2 x)^{2} \\
= & \frac{1}{4}\left[1+\cos ^{2} 2 x-2 \cos 2 x\right] \\
= & \frac{1}{4}\left[1+\left(\frac{1+\cos 4 x}{2}\right)-2 \cos 2 x\right] \\
= & \frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] \\
= & \frac{1}{4}\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] \\
\therefore \int \sin ^{4} x d x & =\frac{1}{4} \int\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] d x \\
& =\frac{1}{4}\left[\frac{3}{2} x+\frac{1}{2}\left(\frac{\sin 4 x}{4}\right)-\frac{2 \sin 2 x}{2}\right]+\mathrm{C} \\
& =\frac{1}{8}\left[3 x+\frac{\sin 4 x}{4}-2 \sin 2 x\right]+\mathrm{C} \\
& =\frac{3 x}{8}-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+\mathrm{C}
\end{aligned}
$$

Question 11:
$\cos ^{4} 2 x$
Answer

$$
\begin{aligned}
& \cos ^{4} 2 x=\left(\cos ^{2} 2 x\right)^{2} \\
&=\left(\frac{1+\cos 4 x}{2}\right)^{2} \\
&=\frac{1}{4}\left[1+\cos ^{2} 4 x+2 \cos 4 x\right] \\
&=\frac{1}{4}\left[1+\left(\frac{1+\cos 8 x}{2}\right)+2 \cos 4 x\right] \\
&=\frac{1}{4}\left[1+\frac{1}{2}+\frac{\cos 8 x}{2}+2 \cos 4 x\right] \\
&=\frac{1}{4}\left[\frac{3}{2}+\frac{\cos 8 x}{2}+2 \cos 4 x\right] \\
& \therefore \int \cos ^{4} 2 x d x=\int\left(\frac{3}{8}+\frac{\cos 8 x}{8}+\frac{\cos 4 x}{2}\right) d x \\
&=\frac{3}{8} x+\frac{\sin 8 x}{64}+\frac{\sin 4 x}{8}+\mathrm{C}
\end{aligned}
$$

Question 12:
$\frac{\sin ^{2} x}{1+\cos x}$
Answer

$$
\begin{aligned}
& \begin{aligned}
\frac{\sin ^{2} x}{1+\cos x} & =\frac{\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}\left[\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2} ; \cos x=2 \cos ^{2} \frac{x}{2}-1\right] \\
& =\frac{4 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}} \\
& =2 \sin ^{2} \frac{x}{2} \\
& =1-\cos x
\end{aligned} \\
& \begin{aligned}
\therefore \int \frac{\sin ^{2} x}{1+\cos x} d x & =\int(1-\cos x) d x \\
& =x-\sin x+C
\end{aligned}
\end{aligned}
$$

Question 13:
$\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}$
Answer

$$
\begin{aligned}
& \begin{aligned}
& \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}= \\
&=\frac{-2 \sin \frac{2 x+2 \alpha}{2} \sin \frac{2 x-2 \alpha}{2}}{-2 \sin \frac{x+\alpha}{2} \sin \frac{x-\alpha}{2}} \quad \quad[\cos C-\cos D=-2 \\
& \sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)
\end{aligned} \\
&=\frac{\left[2 \sin \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x+\alpha}{2}\right)\right]\left[2 \sin \left(\frac{x-\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right)\right]}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)} \\
&=4 \cos \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right) \\
&=2\left[\cos \left(\frac{x+\alpha}{2}+\frac{x-\alpha}{2}\right)+\cos \frac{x+\alpha}{2}-\frac{x-\alpha}{2}\right] \\
&=2[\cos (x)+\cos \alpha] \\
&=2 \cos x+2 \cos \alpha
\end{aligned} \quad \begin{aligned}
& \therefore \int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x=\int 2 \cos x+2 \cos \alpha \\
&=2[\sin x+x \cos \alpha]+\mathrm{C}
\end{aligned}
$$

Question 14:
$\frac{\cos x-\sin x}{1+\sin 2 x}$
Answer

$$
\begin{aligned}
\frac{\cos x-\sin x}{1+\sin 2 x} & =\frac{\cos x-\sin x}{\left(\sin ^{2} x+\cos ^{2} x\right)+2 \sin x \cos x} \\
& =\frac{\cos x-\sin x}{(\sin x+\cos x)^{2}}
\end{aligned}
$$

Let $\sin x+\cos x=t$

$$
\begin{aligned}
\therefore(\cos x-\sin x) d x & =d t \\
\Rightarrow \int \frac{\cos x-\sin x}{1+\sin 2 x} d x & =\int \frac{\cos x-\sin x}{(\sin x+\cos x)^{2}} d x \\
& =\int \frac{d t}{t^{2}} \\
& =\int t^{-2} d t \\
& =-t^{-1}+\mathrm{C} \\
& =-\frac{1}{t}+\mathrm{C} \\
& =\frac{-1}{\sin x+\cos x}+\mathrm{C}
\end{aligned}
$$

Question 15:
$\tan ^{3} 2 x \sec 2 x$
Answer

$$
\left.\left.\left.\begin{array}{l}
\tan ^{3} 2 x \sec 2 x
\end{array}=\tan ^{2} 2 x \tan 2 x \sec 2 x\right] \text { (} \sec ^{2} 2 x-1\right) \tan 2 x \sec 2 x\right] \text { } \begin{aligned}
\therefore \int \tan ^{3} 2 x \sec 2 x d x & =\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\int \tan 2 x \sec 2 x-\tan 2 x \sec 2 x \\
& =\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\frac{\sec 2 x}{2}+\mathrm{C}
\end{aligned}
$$

Let $\sec 2 x=t$
$\therefore 2 \sec 2 x \tan 2 x d x=d t$
$\therefore \int \tan ^{3} 2 x \sec 2 x d x=\frac{1}{2} \int t^{2} d t-\frac{\sec 2 x}{2}+\mathrm{C}$

$$
\begin{aligned}
& =\frac{t^{3}}{6}-\frac{\sec 2 x}{2}+\mathrm{C} \\
& =\frac{(\sec 2 x)^{3}}{6}-\frac{\sec 2 x}{2}+\mathrm{C}
\end{aligned}
$$

Question 16:
$\tan ^{4} x$
Answer
$\tan ^{4} x$
$=\tan ^{2} x \cdot \tan ^{2} x$
$=\left(\sec ^{2} x-1\right) \tan ^{2} x$
$=\sec ^{2} x \tan ^{2} x-\tan ^{2} x$
$=\sec ^{2} x \tan ^{2} x-\left(\sec ^{2} x-1\right)$
$=\sec ^{2} x \tan ^{2} x-\sec ^{2} x+1$
$\begin{aligned} \therefore \int \tan ^{4} x d x & =\int \sec ^{2} x \tan ^{2} x d x-\int \sec ^{2} x d x+\int 1 \cdot d x \\ & =\int \sec ^{2} x \tan ^{2} x d x-\tan x+x+C\end{aligned}$

Consider $\int \sec ^{2} x \tan ^{2} x d x$
Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$\Rightarrow \int \sec ^{2} x \tan ^{2} x d x=\int t^{2} d t=\frac{t^{3}}{3}=\frac{\tan ^{3} x}{3}$

From equation (1), we obtain
$\int \tan ^{4} x d x=\frac{1}{3} \tan ^{3} x-\tan x+x+C$

Question 17:
$\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}$
Answer

$$
\begin{aligned}
& \begin{aligned}
\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} & =\frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x}+\frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x}+\frac{\cos x}{\sin ^{2} x} \\
& =\tan x \sec x+\cot x \operatorname{cosec} x
\end{aligned} \\
& \begin{aligned}
\therefore \quad \int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x & =\int(\tan x \sec x+\cot x \operatorname{cosec} x) d x \\
& =\sec x-\operatorname{cosec} x+C
\end{aligned}
\end{aligned}
$$

Question 18:
$\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}$
Answer
$\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}$
$=\frac{\cos 2 x+(1-\cos 2 x)}{\cos ^{2} x} \quad\left[\cos 2 x=1-2 \sin ^{2} x\right]$
$=\frac{1}{\cos ^{2} x}$
$=\sec ^{2} x$
$\therefore \int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} d x=\int \sec ^{2} x d x=\tan x+C$

Question 19:
$\frac{1}{\sin x \cos ^{3} x}$
Answer

$$
\begin{aligned}
\frac{1}{\sin x \cos ^{3} x} & =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos ^{3} x} \\
& =\frac{\sin x}{\cos ^{3} x}+\frac{1}{\sin x \cos x} \\
& =\tan x \sec ^{2} x+\frac{1 \cos ^{2} x}{\frac{\sin x \cos x}{\cos ^{2} x}} \\
& =\tan x \sec ^{2} x+\frac{\sec ^{2} x}{\tan x}
\end{aligned}
$$

$\therefore \int \frac{1}{\sin x \cos ^{3} x} d x=\int \tan x \sec ^{2} x d x+\int \frac{\sec ^{2} x}{\tan x} d x$
Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{\sin x \cos ^{3} x} d x & =\int t d t+\int \frac{1}{t} d t \\
& =\frac{t^{2}}{2}+\log |t|+\mathrm{C} \\
& =\frac{1}{2} \tan ^{2} x+\log |\tan x|+\mathrm{C}
\end{aligned}
$$

Question 20:
$\frac{\cos 2 x}{(\cos x+\sin x)^{2}}$
Answer
$\frac{\cos 2 x}{(\cos x+\sin x)^{2}}=\frac{\cos 2 x}{\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x}=\frac{\cos 2 x}{1+\sin 2 x}$
$\therefore \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\int \frac{\cos 2 x}{(1+\sin 2 x)} d x$
Let $1+\sin 2 x=t$
$\Rightarrow 2 \cos 2 x d x=d t$
$\therefore \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\frac{1}{2} \int_{t}^{\frac{1}{t}} d t$

$$
=\frac{1}{2} \log |t|+\mathrm{C}
$$

$$
=\frac{1}{2} \log |1+\sin 2 x|+\mathrm{C}
$$

$$
=\frac{1}{2} \log \left|(\sin x+\cos x)^{2}\right|+C
$$

$$
=\log |\sin x+\cos x|+C
$$

Question 21:
$\sin ^{-1}(\cos x)$
Answer
$\sin ^{-1}(\cos x)$
Let $\cos x=t$
Then, $\sin x=\sqrt{1-t^{2}}$

$$
\begin{aligned}
& \Rightarrow(-\sin x) d x=d t \\
& d x=\frac{-d t}{\sin x} \\
& d x=\frac{-d t}{\sqrt{1-t^{2}}} \\
& \begin{aligned}
\therefore \int \sin ^{-1}(\cos x) d x & =\int \sin ^{-1} t\left(\frac{-d t}{\sqrt{1-t^{2}}}\right) \\
& =-\int \frac{\sin ^{-1} t}{\sqrt{1-t^{2}}} d t
\end{aligned}
\end{aligned}
$$

Let $\sin ^{-1} t=u$

$$
\Rightarrow \frac{1}{\sqrt{1-t^{2}}} d t=d u
$$

$$
\therefore \int \sin ^{-1}(\cos x) d x=\int 4 d u
$$

$$
=-\frac{u^{2}}{2}+C
$$

$$
=\frac{-\left(\sin ^{1} t\right)^{2}}{2}+C
$$

$$
\begin{equation*}
=\frac{-\left[\sin ^{-1}(\cos x)\right]^{2}}{2}+C \tag{1}
\end{equation*}
$$

It is known that,
$\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$\therefore \sin ^{-1}(\cos x)=\frac{\pi}{2}-\cos ^{-1}(\cos x)=\left(\frac{\pi}{2}-x\right)$
Substituting in equation (1), we obtain

$$
\begin{aligned}
\int \sin ^{-1}(\cos x) d x & =\frac{-\left[\frac{\pi}{2}-x\right]^{2}}{2}+C \\
& =-\frac{1}{2}\left(\frac{\pi^{2}}{2}+x^{2}-\pi x\right)+C \\
& =-\frac{\pi^{2}}{8}-\frac{x^{2}}{2}+\frac{1}{2} \pi x+C \\
& =\frac{\pi x}{2}-\frac{x^{2}}{2}+\left(C-\frac{\pi^{2}}{8}\right) \\
& =\frac{\pi x}{2}-\frac{x^{2}}{2}+C_{1}
\end{aligned}
$$

Question 22:
$\frac{1}{\cos (x-a) \cos (x-b)}$
Answer

$$
\begin{aligned}
\frac{1}{\cos (x-a) \cos (x-b)} & =\frac{1}{\sin (a-b)}\left[\frac{\sin (a-b)}{\cos (x-a) \cos (x-b)}\right] \\
& =\frac{1}{\sin (a-b)}\left[\frac{\sin [(x-b)-(x-a)]}{\cos (x-a) \cos (x-b)}\right] \\
& =\frac{1}{\sin (a-b)} \frac{[\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)]}{\cos (x-a) \cos (x-b)} \\
& =\frac{1}{\sin (a-b)}[\tan (x-b)-\tan (x-a)]
\end{aligned}
$$

$$
\Rightarrow \int \frac{1}{\cos (x-a) \cos (x-b)} d x=\frac{1}{\sin (a-b)} \int[\tan (x-b)-\tan (x-a)] d x
$$

$$
=\frac{1}{\sin (a-b)}[-\log |\cos (x-b)|+\log |\cos (x-a)|]
$$

$$
=\frac{1}{\sin (a-b)}\left[\log \left|\frac{\cos (x-a)}{\cos (x-b)}\right|\right]+\mathrm{C}
$$

Question 23:
$\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$ is equal to
A. $\tan x+\cot x+C$
B. $\tan x+\operatorname{cosec} x+C$
C. $-\tan x+\cot x+C$
D. $\tan x+\sec x+C$

Answer

$$
\begin{aligned}
\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x & =\int\left(\frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\right) d x \\
& =\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x \\
& =\tan x+\cot x+\text { C }
\end{aligned}
$$

Hence, the correct Answer is A.

Question 24:
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x$ equals
A. $-\cot \left(e x^{x}\right)+C$
B. $\tan \left(x e^{x}\right)+C$
C. $\tan \left(e^{x}\right)+C$
D. $\cot \left(e^{x}\right)+C$

Answer
$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x$
Let $e x^{x}=t$
$\Rightarrow\left(e^{x} \cdot x+e^{x} \cdot 1\right) d x=d t$
$e^{x}(x+1) d x=d t$

$$
\begin{aligned}
\therefore \int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x & =\int \frac{d t}{\cos ^{2} t} \\
& =\int \sec ^{2} t d t \\
& =\tan t+\mathrm{C} \\
& =\tan \left(e^{x} \cdot x\right)+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is B.

