Question 1:
$\frac{3 x^{2}}{x^{6}+1}$
Answer
Let $x^{3}=t$
$\therefore 3 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{3 x^{2}}{x^{6}+1} d x & =\int \frac{d t}{t^{2}+1} \\
& =\tan ^{1} t+\mathrm{C} \\
& =\tan ^{-1}\left(x^{3}\right)+\mathrm{C}
\end{aligned}
$$

Question 2:
$\frac{1}{\sqrt{1+4 x^{2}}}$
Answer
Let $2 x=t$
$\therefore 2 d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{1+4 x^{2}}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{1+t^{2}}}$

$$
=\frac{1}{2}\left[\log \left|t+\sqrt{t^{2}+1}\right|\right]+\mathrm{C}
$$

$$
\left[\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right]
$$

$$
=\frac{1}{2} \log \left|2 x+\sqrt{4 x^{2}+1}\right|+\mathrm{C}
$$

Question 3:
$\frac{1}{\sqrt{(2-x)^{2}+1}}$
Answer
Let $2-x=t$
$\Rightarrow-d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{\sqrt{(2-x)^{2}+1}} d x & =-\int \frac{1}{\sqrt{t^{2}+1}} d t \\
& =-\log \left|t+\sqrt{t^{2}+1}\right|+\mathrm{C} \quad\left[\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right] \\
& =-\log \left|2-x+\sqrt{(2-x)^{2}+1}\right|+\mathrm{C} \\
& =\log \left|\frac{1}{(2-x)+\sqrt{x^{2}-4 x+5}}\right|+\mathrm{C}
\end{aligned}
$$

Question 4:
$\frac{1}{\sqrt{9-25 x^{2}}}$
Answer
Let $5 x=t$
$\therefore 5 d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{9-25 x^{2}}} d x=\frac{1}{5} \int \frac{1}{9-t^{2}} d t$
$=\frac{1}{5} \int \frac{1}{\sqrt{3^{2}-t^{2}}} d t$
$=\frac{1}{5} \sin ^{-1}\left(\frac{t}{3}\right)+\mathrm{C}$

$$
=\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+C
$$

Question 5:
$\frac{3 x}{1+2 x^{4}}$
Answer
Let $\sqrt{2} x^{2}=t$
$\therefore 2 \sqrt{2} x d x=d t$
$\Rightarrow \int \frac{3 x}{1+2 x^{4}} d x=\frac{3}{2 \sqrt{2}} \int \frac{d t}{1+t^{2}}$
$=\frac{3}{2 \sqrt{2}}\left[\tan ^{-1} t\right]+\mathrm{C}$
$=\frac{3}{2 \sqrt{2}} \tan ^{-1}\left(\sqrt{2} x^{2}\right)+C$

Question 6:
$\frac{x^{2}}{1-x^{6}}$
Answer
Let $x^{3}=t$
$\therefore 3 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{x^{2}}{1-x^{6}} d x & =\frac{1}{3} \int \frac{d t}{1-t^{2}} \\
& =\frac{1}{3}\left[\frac{1}{2} \log \left|\frac{1+t}{1-t}\right|\right]+\mathrm{C} \\
& =\frac{1}{6} \log \left|\frac{1+x^{3}}{1-x^{3}}\right|+\mathrm{C}
\end{aligned}
$$

Question 7:
$\frac{x-1}{\sqrt{x^{2}-1}}$
Answer

$$
\begin{equation*}
\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x \tag{1}
\end{equation*}
$$

For $\int \frac{x}{\sqrt{x^{2}-1}} d x$, let $x^{2}-1=t \Rightarrow 2 x d x=d t$

$$
\begin{aligned}
\therefore \int \frac{x}{\sqrt{x^{2}-1}} d x & =\frac{1}{2} \int \frac{d t}{\sqrt{t}} \\
& =\frac{1}{2} \int t^{-\frac{1}{2}} d t \\
& =\frac{1}{2}\left[2 t^{\frac{1}{2}}\right] \\
& =\sqrt{t} \\
& =\sqrt{x^{2}-1}
\end{aligned}
$$

From (1), we obtain

$$
\begin{aligned}
\int \frac{x-1}{\sqrt{x^{2}-1}} d x & =\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x \quad\left[\int \frac{1}{\sqrt{x^{2}-a^{2}}} d t=\log \left|x+\sqrt{x^{2}-a^{2}}\right|\right] \\
& =\sqrt{x^{2}-1}-\log \left|x+\sqrt{x^{2}-1}\right|+\mathrm{C}
\end{aligned}
$$

Question 8:
$\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}$
Answer
Let $x^{3}=t$
$\Rightarrow 3 x^{2} d x=d t$

$$
\begin{aligned}
\therefore \int \frac{x^{2}}{\sqrt{x^{6}+a^{6}}} d x & =\frac{1}{3} \int \frac{d t}{\sqrt{t^{2}+\left(a^{3}\right)^{2}}} \\
& =\frac{1}{3} \log \left|t+\sqrt{t^{2}+a^{6}}\right|+\mathrm{C} \\
& =\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}+a^{6}}\right|+\mathrm{C}
\end{aligned}
$$

Question 9:
$\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}$
Answer
Let $\tan x=t$
$\therefore \sec ^{2} x d x=d t$

$$
\begin{aligned}
\Rightarrow \int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}} d x & =\int \frac{d t}{\sqrt{t^{2}+2^{2}}} \\
& =\log \left|t+\sqrt{t^{2}+4}\right|+\mathrm{C} \\
& =\log \left|\tan x+\sqrt{\tan ^{2} x+4}\right|+\mathrm{C}
\end{aligned}
$$

Question 10:
$\frac{1}{\sqrt{x^{2}+2 x+2}}$
Answer

$$
\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{(x+1)^{2}+(1)^{2}}} d x
$$

Let $x+1=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{t^{2}+1}} d t$

$$
=\log \left|t+\sqrt{t^{2}+1}\right|+\mathrm{C}
$$

$$
=\log \left|(x+1)+\sqrt{(x+1)^{2}+1}\right|+C
$$

$$
=\log \left|(x+1)+\sqrt{x^{2}+2 x+2}\right|+\mathrm{C}
$$

Question 11:
$\frac{1}{\sqrt{9 x^{2}+6 x+5}}$
Answer

$$
\begin{aligned}
& \int \frac{1}{9 x^{2}+6 x+5} d x=\int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x \\
& \text { Let }(3 x+1)=t \\
& \therefore 3 d x=d t \\
& \begin{aligned}
\Rightarrow \int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x & =\frac{1}{3} \int \frac{1}{t^{2}+2^{2}} d t \\
& =\frac{1}{3}\left[\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)\right]+\mathrm{C} \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3 x+1}{2}\right)+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 12:
$\frac{1}{\sqrt{7-6 x-x^{2}}}$
Answer
$7-6 x-x^{2}$ can be written as $7-\left(x^{2}+6 x+9-9\right)$.
Therefore,

$$
\begin{aligned}
& 7-\left(x^{2}+6 x+9-9\right) \\
& =16-\left(x^{2}+6 x+9\right) \\
& =16-(x+3)^{2} \\
& =(4)^{2}-(x+3)^{2} \\
& \therefore \int \frac{1}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x
\end{aligned}
$$

Let $x+3=t$
$\Rightarrow d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(t)^{2}}} d t$
$=\sin ^{-1}\left(\frac{t}{4}\right)+C$
$=\sin ^{-1}\left(\frac{x+3}{4}\right)+C$

Question 13:
$\frac{1}{\sqrt{(x-1)(x-2)}}$
Answer
$(x-1)(x-2)$ can be written as $x^{2}-3 x+2$.
Therefore,
$x^{2}-3 x+2$
$=x^{2}-3 x+\frac{9}{4}-\frac{9}{4}+2$
$=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}$
$=\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}$
$\therefore \int \frac{1}{\sqrt{(x-1)(x-2)}} d x=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x$
Let $x-\frac{3}{2}=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}} d t$
$=\log \left|t+\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}\right|+\mathrm{C}$
$=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+\mathrm{C}$

Question 14:
$\frac{1}{\sqrt{8+3 x-x^{2}}}$

Answer
$8+3 x-x^{2}$ can be written as $8-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)$.
Therefore,

$$
\begin{aligned}
& 8-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right) \\
& =\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2} \\
& \Rightarrow \int \frac{1}{\sqrt{8+3 x-x^{2}}} d x=\int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x
\end{aligned}
$$

Let $x-\frac{3}{2}=t$
$\therefore d x=d t$
$\Rightarrow \int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^{2}-t^{2}}} d t$

$$
=\sin ^{-1}\left(\frac{t}{\frac{\sqrt{41}}{2}}\right)+\mathrm{C}
$$

$$
=\sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{41}}{2}}\right)+\mathrm{C}
$$

$$
=\sin ^{-1}\left(\frac{2 x-3}{\sqrt{41}}\right)+\mathrm{C}
$$

Question 15:
$\frac{1}{\sqrt{(x-a)(x-b)}}$
Answer
$(x-a)(x-b)$ can be written as $x^{2}-(a+b) x+a b$.
Therefore,

$$
\begin{aligned}
& x^{2}-(a+b) x+a b \\
& =x^{2}-(a+b) x+\frac{(a+b)^{2}}{4}-\frac{(a+b)^{2}}{4}+a b \\
& =\left[x-\left(\frac{a+b}{2}\right)\right]^{2}-\frac{(a-b)^{2}}{4} \\
& \Rightarrow \int \frac{1}{\sqrt{(x-a)(x-b)}} d x=\int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a-b}{2}\right)^{2}}} d x
\end{aligned}
$$

Let $x-\left(\frac{a+b}{2}\right)=t$

$$
\begin{aligned}
& \therefore d x=d t \\
& \begin{aligned}
\Rightarrow \int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a-b}{2}\right)^{2}}} d x & =\int \frac{1}{\sqrt{t^{2}-\left(\frac{a-b}{2}\right)^{2}}} d t \\
& =\log \left|t+\sqrt{t^{2}-\left(\frac{a-b}{2}\right)^{2}}\right|+\mathrm{C} \\
& =\log \left|\left\{x-\left(\frac{a+b}{2}\right)\right\}+\sqrt{(x-a)(x-b)}\right|+\mathrm{C}
\end{aligned}
\end{aligned}
$$

Question 16:
$\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}$
Answer
Let $4 x+1=A \frac{d}{d x}\left(2 x^{2}+x-3\right)+B$
$\Rightarrow 4 x+1=A(4 x+1)+B$
$\Rightarrow 4 x+1=4 A x+A+B$
Equating the coefficients of x and constant term on both sides, we obtain
$4 A=4 \Rightarrow A=1$
$A+B=1 \Rightarrow B=0$

Let $2 x^{2}+x-3=t$
$\therefore(4 x+1) d x=d t$
$\Rightarrow \int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x=\int \frac{1}{\sqrt{t}} d t$

$$
\begin{aligned}
& =2 \sqrt{t}+\mathrm{C} \\
& =2 \sqrt{2 x^{2}+x-3}+\mathrm{C}
\end{aligned}
$$

Question 17:
$\frac{x+2}{\sqrt{x^{2}-1}}$
Answer
Let $x+2=A \frac{d}{d x}\left(x^{2}-1\right)+B$
$\Rightarrow x+2=A(2 x)+B$
Equating the coefficients of x and constant term on both sides, we obtain
$2 A=1 \Rightarrow A=\frac{1}{2}$
$B=2$
From (1), we obtain
$(x+2)=\frac{1}{2}(2 x)+2$
Then, $\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\int^{\frac{1}{2}(2 x)+2} \sqrt{x^{2}-1} d x$

$$
\begin{equation*}
=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x+\int \frac{2}{\sqrt{x^{2}-1}} d x \tag{2}
\end{equation*}
$$

In $\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x$, let $x^{2}-1=t \Rightarrow 2 x d x=d t$

$$
\begin{aligned}
\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x & =\frac{1}{2} \int \frac{d t}{\sqrt{t}} \\
& =\frac{1}{2}[2 \sqrt{t}] \\
& =\sqrt{t} \\
& =\sqrt{x^{2}-1}
\end{aligned}
$$

Then, $\int \frac{2}{\sqrt{x^{2}-1}} d x=2 \int \frac{1}{\sqrt{x^{2}-1}} d x=2 \log \left|x+\sqrt{x^{2}-1}\right|$
From equation (2), we obtain
$\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+\mathrm{C}$

Question 18:
$\frac{5 x-2}{1+2 x+3 x^{2}}$
Answer
Let $5 x-2=A \frac{d}{d x}\left(1+2 x+3 x^{2}\right)+B$
$\Rightarrow 5 x-2=A(2+6 x)+B$
Equating the coefficient of x and constant term on both sides, we obtain
$5=6 A \Rightarrow A=\frac{5}{6}$
$2 A+B=-2 \Rightarrow B=-\frac{11}{3}$
$\therefore 5 x-2=\frac{5}{6}(2+6 x)+\left(-\frac{11}{3}\right)$
$\Rightarrow \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\int \frac{\frac{5}{6}(2+6 x)-\frac{11}{3}}{1+2 x+3 x^{2}} d x$

$$
=\frac{5}{6} \int \frac{2+6 x}{1+2 x+3 x^{2}} d x-\frac{11}{3} \int \frac{1}{1+2 x+3 x^{2}} d x
$$

Let $I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x$ and $I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x$
$\therefore \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\frac{5}{6} I_{1}-\frac{11}{3} I_{2}$
$I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x$
Let $1+2 x+3 x^{2}=t$
$\Rightarrow(2+6 x) d x=d t$
$\therefore I_{1}=\int \frac{d t}{t}$
$I_{1}=\log |t|$
$I_{1}=\log \left|1+2 x+3 x^{2}\right|$
$I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x$
$1+2 x+3 x^{2}$ can be written as $1+3\left(x^{2}+\frac{2}{3} x\right)$.
Therefore,

$$
\begin{align*}
& 1+3\left(x^{2}+\frac{2}{3} x\right) \\
& =1+3\left(x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9}\right) \\
& =1+3\left(x+\frac{1}{3}\right)^{2}-\frac{1}{3} \\
& =\frac{2}{3}+3\left(x+\frac{1}{3}\right)^{2} \\
& =3\left[\left(x+\frac{1}{3}\right)^{2}+\frac{2}{9}\right] \\
& =3\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right] \\
& I_{2}=\frac{1}{3} \int \frac{1}{\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]} d x \\
& =\frac{1}{3}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x+\frac{1}{3}}{\sqrt{2}}\right)\right] \\
& \left.\left.\left.=\frac{1}{3}\right)\right] \frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right] \\
& =\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right) \tag{3}
\end{align*}
$$

Substituting equations (2) and (3) in equation (1), we obtain

$$
\begin{aligned}
\int \frac{5 x-2}{1+2 x+3 x^{2}} d x & =\frac{5}{6}\left[\log \left|1+2 x+3 x^{2}\right|\right]-\frac{11}{3}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]+\mathrm{C} \\
& =\frac{5}{6} \log \left|1+2 x+3 x^{2}\right|-\frac{11}{3 \sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+\mathrm{C}
\end{aligned}
$$

Question 19:
$\frac{6 x+7}{\sqrt{(x-5)(x-4)}}$
Answer
$\frac{6 x+7}{\sqrt{(x-5)(x-4)}}=\frac{6 x+7}{\sqrt{x^{2}-9 x+20}}$
Let $6 x+7=A \frac{d}{d x}\left(x^{2}-9 x+20\right)+B$
$\Rightarrow 6 x+7=A(2 x-9)+B$
Equating the coefficients of x and constant term, we obtain
$2 A=6 \Rightarrow A=3$
$-9 A+B=7 \Rightarrow B=34$
$\therefore 6 x+7=3(2 x-9)+34$
$\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}}=\int \frac{3(2 x-9)+34}{\sqrt{x^{2}-9 x+20}} d x$

$$
=3 \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x+34 \int \frac{1}{\sqrt{x^{2}-9 x+20}} d x
$$

Let $I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
$\therefore \int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}}=3 I_{1}+34 I_{2}$
Then,
$I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$
Let $x^{2}-9 x+20=t$
$\Rightarrow(2 x-9) d x=d t$
$\Rightarrow I_{1}=\frac{d t}{\sqrt{t}}$
$I_{1}=2 \sqrt{t}$
$I_{1}=2 \sqrt{x^{2}-9 x+20}$
and $I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
$x^{2}-9 x+20$ can be written as $x^{2}-9 x+20+\frac{81}{4}-\frac{81}{4}$.
Therefore,

$$
\begin{align*}
& x^{2}-9 x+20+\frac{81}{4}-\frac{81}{4} \\
& =\left(x-\frac{9}{2}\right)^{2}-\frac{1}{4} \\
& =\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2} \\
& \Rightarrow I_{2}=\int \frac{1}{\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x \\
& I_{2}=\log \left|\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right| \tag{3}
\end{align*}
$$

Substituting equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x & =3\left[2 \sqrt{x^{2}-9 x+20}\right]+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+\mathrm{C} \\
& =6 \sqrt{x^{2}-9 x+20}+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+\mathrm{C}
\end{aligned}
$$

Question 20:
$\frac{x+2}{\sqrt{4 x-x^{2}}}$
Answer
Let $x+2=A \frac{d}{d x}\left(4 x-x^{2}\right)+B$
$\Rightarrow x+2=A(4-2 x)+B$
Equating the coefficients of x and constant term on both sides, we obtain
$-2 A=1 \Rightarrow A=-\frac{1}{2}$
$4 A+B=2 \Rightarrow B=4$
$\Rightarrow(x+2)=-\frac{1}{2}(4-2 x)+4$
$\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=\int \frac{-\frac{1}{2}(4-2 x)+4}{\sqrt{4 x-x^{2}}} d x$

$$
=-\frac{1}{2} \int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x+4 \int \frac{1}{\sqrt{4 x-x^{2}}} d x
$$

Let $I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$ and $I_{2} \int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\therefore \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=-\frac{1}{2} I_{1}+4 I_{2}$
Then, $I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$
Let $4 x-x^{2}=1$
$\Rightarrow(4-2 x) d x=d t$
$\Rightarrow t_{1}=\int_{\sqrt{t}}^{d t}=2 \sqrt{t}=2 \sqrt{4 x-x^{2}}$
$I_{2}=\int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\Rightarrow 4 x-x^{2}=-\left(-4 x+x^{2}\right)$
$=\left(-4 x+x^{2}+4-4\right)$
$=4-(x-2)^{2}$
$=(2)^{2}-(x-2)^{2}$
$\therefore I_{2}=\int \frac{1}{\sqrt{(2)^{2}-(x-2)^{2}}} d x=\sin ^{-1}\left(\frac{x-2}{2}\right)$
Using equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{x+2}{\sqrt{4 x-x^{2}}} d x & =-\frac{1}{2}\left(2 \sqrt{4 x-x^{2}}\right)+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C} \\
& =-\sqrt{4 x-x^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C}
\end{aligned}
$$

Question 21:
$\frac{x+2}{\sqrt{x^{2}+2 x+3}}$
Answer

$$
\begin{aligned}
\int \frac{(x+2)}{\sqrt{x^{2}+2 x+3}} d x & =\frac{1}{2} \int \frac{2(x+2)}{\sqrt{x^{2}+2 x+3}} d x \\
& =\frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x+3}} d x \\
& =\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\frac{1}{2} \int \frac{2}{\sqrt{x^{2}+2 x+3}} d x \\
& =\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x
\end{aligned}
$$

Let $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\therefore \int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2} I_{1}+I_{2}$
Then, $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$
Let $x^{2}+2 x+3=t$
$\Rightarrow(2 x+2) d x=d t$
$I_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{x^{2}+2 x+3}$
$I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\Rightarrow x^{2}+2 x+3=x^{2}+2 x+1+2=(x+1)^{2}+(\sqrt{2})^{2}$
$\therefore I_{2}=\int \frac{1}{\sqrt{(x+1)^{2}+(\sqrt{2})^{2}}} d x=\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|$
Using equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
& \int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2}\left[2 \sqrt{x^{2}+2 x+3}\right]+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C} \\
& =\sqrt{x^{2}+2 x+3}+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C}
\end{aligned}
$$

Question 22:

$\frac{x+3}{x^{2}-2 x-5}$
Answer
Let $(x+3)=A \frac{d}{d x}\left(x^{2}-2 x-5\right)+B$
$(x+3)=A(2 x-2)+B$
Equating the coefficients of x and constant term on both sides, we obtain

$$
\begin{aligned}
& 2 A=1 \Rightarrow A=\frac{1}{2} \\
& -2 A+B=3 \Rightarrow B=4 \\
& \therefore(x+3)=\frac{1}{2}(2 x-2)+4 \\
& \Rightarrow \int \frac{x+3}{x^{2}-2 x-5} d x
\end{aligned}=\int \frac{\frac{1}{2}(2 x-2)+4}{x^{2}-2 x-5} d x .1 x+4 \int \frac{1}{x^{2}-2 x-5} d x .
$$

Let $I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$ and $I_{2}=\int \frac{1}{x^{2}-2 x-5} d x$
$\therefore \int \frac{x+3}{\left(x^{2}-2 x-5\right)} d x=\frac{1}{2} I_{1}+4 I_{2}$
Then, $I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$
Let $x^{2}-2 x-5=t$
$\Rightarrow(2 x-2) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}-2 x-5\right|$

$$
\begin{align*}
I_{2} & =\int \frac{1}{x^{2}-2 x-5} d x \\
& =\int \frac{1}{\left(x^{2}-2 x+1\right)-6} d x \\
& =\int \frac{1}{(x-1)^{2}+(\sqrt{6})^{2}} d x \\
& =\frac{1}{2 \sqrt{6}} \log \left(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right) \tag{3}
\end{align*}
$$

Substituting (2) and (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{x+3}{x^{2}-2 x-5} d x & =\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{4}{2 \sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+\mathrm{C} \\
& =\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{2}{\sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+\mathrm{C}
\end{aligned}
$$

Question 23:
$\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}$
Answer

Let $5 x+3=A \frac{d}{d x}\left(x^{2}+4 x+10\right)+B$
$\Rightarrow 5 x+3=A(2 x+4)+B$
Equating the coefficients of x and constant term, we obtain

$$
\begin{aligned}
& 2 A=5 \Rightarrow A=\frac{5}{2} \\
& 4 A+B=3 \Rightarrow B=-7 \\
& \therefore 5 x+3=\frac{5}{2}(2 x+4)-7 \\
& \Rightarrow \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{\frac{5}{2}(2 x+4)-7}{\sqrt{x^{2}+4 x+10}} d x \\
& \quad=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x
\end{aligned}
$$

Let $I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$\therefore \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2} I_{1}-7 I_{2}$
Then, $I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$
Let $x^{2}+4 x+10=t$
$\therefore(2 x+4) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{t}=2 \sqrt{t}=2 \sqrt{x^{2}+4 x+10}$
$I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$=\int \frac{1}{\sqrt{\left(x^{2}+4 x+4\right)+6}} d x$
$=\int \frac{1}{(x+2)^{2}+(\sqrt{6})^{2}} d x$
$=\log \left|(x+2) \sqrt{x^{2}+4 x+10}\right|$
Using equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x & =\frac{5}{2}\left[2 \sqrt{x^{2}+4 x+10}\right]-7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+\mathrm{C} \\
& =5 \sqrt{x^{2}+4 x+10}-7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+\mathrm{C}
\end{aligned}
$$

Question 24:
$\int \frac{d x}{x^{2}+2 x+2}$ equals
A. $x \tan ^{-1}(x+1)+C$
B. $\tan ^{-1}(x+1)+C$
C. $(x+1) \tan ^{-1} x+C$
D. $\tan ^{-1} x+C$

Answer

$$
\begin{aligned}
\int \frac{d x}{x^{2}+2 x+2} & =\int \frac{d x}{\left(x^{2}+2 x+1\right)+1} \\
& =\int \frac{1}{(x+1)^{2}+(1)^{2}} d x \\
& =\left[\tan ^{-1}(x+1)\right]+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is B.

Question 25:
$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$ equals
A. $\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+\mathrm{C}$
B. $\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+\mathrm{C}$
C. $\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+\mathrm{C}$
D. $\frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{9}\right)+\mathrm{C}$

Answer

$$
\int \frac{d x}{\sqrt{9 x-4 x^{2}}}
$$

$$
=\int \frac{1}{\sqrt{-4\left(x^{2}-\frac{9}{4} x\right)}} d x
$$

$$
=\int \frac{1}{-4\left(x^{2}-\frac{9}{4} x+\frac{81}{64}-\frac{81}{64}\right)^{2}} d x
$$

$$
=\int \frac{1}{\sqrt{-4\left[\left(x-\frac{9}{8}\right)^{2}-\left(\frac{9}{8}\right)^{2}\right]}} d x
$$

$$
=\frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{9}{8}\right)^{2}-\left(x-\frac{9}{8}\right)^{2}}} d x
$$

$$
=\frac{1}{2}\left[\sin ^{-1}\left(\frac{x-\frac{9}{8}}{\frac{9}{8}}\right)\right]+\mathrm{C}
$$

$$
\left(\int \frac{d y}{\sqrt{a^{2}-y^{2}}}=\sin ^{-1} \frac{y}{a}+\mathrm{C}\right)
$$

$$
=\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+\mathrm{C}
$$

Hence, the correct Answer is B.

