Question 1:

$x \sin x$
Answer
Let $I=\int x \sin x d x$
Taking x as first function and $\sin x$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x \int \sin x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin x d x\right\} d x \\
& =x(-\cos x)-\int 1 \cdot(-\cos x) d x \\
& =-x \cos x+\sin x+\mathrm{C}
\end{aligned}
$$

Question 2:
$x \sin 3 x$
Answer
Let $I=\int x \sin 3 x d x$
Taking x as first function and $\sin 3 x$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x \int \sin 3 x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin 3 x d x\right\} \\
& =x\left(\frac{-\cos 3 x}{3}\right)-\int 1 \cdot\left(\frac{-\cos 3 x}{3}\right) d x \\
& =\frac{-x \cos 3 x}{3}+\frac{1}{3} \int \cos 3 x d x \\
& =\frac{-x \cos 3 x}{3}+\frac{1}{9} \sin 3 x+\mathrm{C}
\end{aligned}
$$

Question 3:
$x^{2} e^{x}$

Answer
Let $I=\int x^{2} e^{x} d x$
Taking x^{2} as first function and e^{x} as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x^{2} \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x^{2}\right) \int e^{x} d x\right\} d x \\
& =x^{2} e^{x}-\int 2 x \cdot e^{x} d x \\
& =x^{2} e^{x}-2 \int x \cdot e^{x} d x
\end{aligned}
$$

Again integrating by parts, we obtain

$$
\begin{aligned}
& =x^{2} e^{x}-2\left[x \cdot \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \cdot \int e^{x} d x\right\} d x\right] \\
& =x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right] \\
& =x^{2} e^{x}-2\left[x e^{x}-e^{x}\right] \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+\mathrm{C} \\
& =e^{x}\left(x^{2}-2 x+2\right)+\mathrm{C}
\end{aligned}
$$

Question 4:

$x \log x$
Answer
Let $I=\int x \log x d x$
Taking $\log x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x \\
& =\log x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \log x}{2}-\int \frac{x}{2} d x \\
& =\frac{x^{2} \log x}{2}-\frac{x^{2}}{4}+\mathrm{C}
\end{aligned}
$$

Question 5:

$x \log 2 x$
Answer
Let $I=\int x \log 2 x d x$
Taking $\log 2 x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\log 2 x \int x d x-\int\left\{\left(\frac{d}{d x} 2 \log x\right) \int x d x\right\} d x \\
& =\log 2 x \cdot \frac{x^{2}}{2}-\int \frac{2}{2 x} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \log 2 x}{2}-\int \frac{x}{2} d x \\
& =\frac{x^{2} \log 2 x}{2}-\frac{x^{2}}{4}+\mathrm{C}
\end{aligned}
$$

Question 6:
$x^{2} \log x$
Answer
Let $I=\int x^{2} \log x d x$
Taking $\log x$ as first function and x^{2} as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\log x \int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x \\
& =\log x\left(\frac{x^{3}}{3}\right)-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x \\
& =\frac{x^{3} \log x}{3}-\int \frac{x^{2}}{3} d x \\
& =\frac{x^{3} \log x}{3}-\frac{x^{3}}{9}+\mathrm{C}
\end{aligned}
$$

Question 7:
$x \sin ^{-1} x$
Answer
Let $I=\int x \sin ^{-1} x d x$
Taking $\sin ^{-1} x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\sin ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int x d x\right\} d x \\
& =\sin ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\frac{1-x^{2}}{\sqrt{1-x^{2}}}-\frac{1}{\left.\sqrt{1-x^{2}}\right\} d x}\right. \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\sqrt{1-x^{2}}-\frac{1}{\left.\sqrt{1-x^{2}}\right\} d x}\right. \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\int \sqrt{1-x^{2}} d x-\int \frac{1}{\sqrt{1-x^{2}}} d x\right\} \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x-\sin ^{-1} x\right\}+\mathrm{C} \\
& =\frac{x^{2} \sin ^{-1} x}{2}+\frac{x}{4} \sqrt{1-x^{2}}+\frac{1}{4} \sin ^{-1} x-\frac{1}{2} \sin ^{-1} x+\mathrm{C} \\
& =\frac{1}{4}\left(2 x^{2}-1\right) \sin ^{-1} x+\frac{x}{4} \sqrt{1-x^{2}}+\mathrm{C}
\end{aligned}
$$

Question 8:
$x \tan ^{-1} x$
Answer
Let $I=\int x \tan ^{-1} x d x$

Taking $\tan ^{-1} x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\tan ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int x d x\right\} d x \\
& =\tan ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left(\frac{x^{2}+1}{1+x^{2}}-\frac{1}{1+x^{2}}\right) d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2}\left(x-\tan ^{-1} x\right)+\mathrm{C} \\
& =\frac{x^{2}}{2} \tan ^{-1} x-\frac{x}{2}+\frac{1}{2} \tan ^{-1} x+\mathrm{C}
\end{aligned}
$$

Question 9:

$x \cos ^{-1} x$
Answer
Let $I=\int x \cos ^{-1} x d x$
Taking $\cos ^{-1} x$ as first function and x as second function and integrating by parts, we obtain

$$
\begin{align*}
I & =\cos ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int x d x\right\} d x \\
& =\cos ^{-1} x \frac{x^{2}}{2}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int\left\{\sqrt{1-x^{2}}+\left(\frac{-1}{\sqrt{1-x^{2}}}\right)\right\} d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \sqrt{1-x^{2}} d x-\frac{1}{2} \int\left(\frac{-1}{\sqrt{1-x^{2}}}\right) d x \\
& =\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} I_{1}-\frac{1}{2} \cos ^{-1} x \tag{1}
\end{align*}
$$

where, $I_{1}=\int \sqrt{1-x^{2}} d x$

$$
\begin{aligned}
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{d}{d x} \sqrt{1-x^{2}} \int x d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{-2 x}{2 \sqrt{1-x^{2}}} x d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\left\{\int \sqrt{1-x^{2}} d x+\int \frac{-d x}{\sqrt{1-x^{2}}}\right\} \\
& \Rightarrow I_{1}=x \sqrt{1-x^{2}}-\left\{I_{1}+\cos ^{-1} x\right\} \\
& \Rightarrow 2 I_{1}=x \sqrt{1-x^{2}}-\cos ^{-1} x \\
& \therefore I_{1}=\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x
\end{aligned}
$$

Substituting in (1), we obtain
$I=\frac{x \cos ^{-1} x}{2}-\frac{1}{2}\left(\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x\right)-\frac{1}{2} \cos ^{-1} x$
$=\frac{\left(2 x^{2}-1\right)}{4} \cos ^{-1} x-\frac{x}{4} \sqrt{1-x^{2}}+\mathrm{C}$

Question 10:
$\left(\sin ^{-1} x\right)^{2}$
Answer
Let $I=\int\left(\sin ^{-1} x\right)^{2} \cdot 1 d x$
Taking $\left(\sin ^{-1} x\right)^{2}$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\left(\sin ^{-1} x\right) \int 1 d x-\int\left\{\frac{d}{d x}\left(\sin ^{-1} x\right)^{2} \cdot \int 1 \cdot d x\right\} d x \\
& =\left(\sin ^{-1} x\right)^{2} \cdot x-\int \frac{2 \sin ^{-1} x}{\sqrt{1-x^{2}}} \cdot x d x \\
& =x\left(\sin ^{-1} x\right)^{2}+\int \sin ^{-1} x \cdot\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right) d x \\
& =x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right] \\
& =x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right] \\
& =x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-\int 2 d x \\
& =x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-2 x+\mathrm{C}
\end{aligned}
$$

Question 11:

$\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}$
Answer
Let $I=\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} d x$
$I=\frac{-1}{2} \int \frac{-2 x}{\sqrt{1-x^{2}}} \cdot \cos ^{-1} x d x$
Taking $\cos ^{-1} x$ as first function and $\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right)$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\frac{-1}{2}\left[\cos ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right] \\
& =\frac{-1}{2}\left[\cos ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right] \\
& =\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+\int 2 d x\right] \\
& =\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+2 x\right]+\mathrm{C} \\
& =-\left[\sqrt{1-x^{2}} \cos ^{-1} x+x\right]+\mathrm{C}
\end{aligned}
$$

Question 12:

$x \sec ^{2} x$
Answer
Let $I=\int x \sec ^{2} x d x$
Taking x as first function and $\sec ^{2} x$ as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =x \int \sec ^{2} x d x-\int\left\{\left\{\frac{d}{d x} x\right\} \int \sec ^{2} x d x\right\} d x \\
& =x \tan x-\int 1 \cdot \tan x d x \\
& =x \tan x+\log |\cos x|+\mathrm{C}
\end{aligned}
$$

Question 13:

$\tan ^{-1} x$
Answer

Let $I=\int 1 \cdot \tan ^{-1} x d x$
Taking $\tan ^{-1} x$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =\tan ^{-1} x \int 1 d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int 1 \cdot d x\right\} d x \\
& =\tan ^{-1} x \cdot x-\int \frac{1}{1+x^{2}} \cdot x d x \\
& =x \tan ^{-1} x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x \\
& =x \tan ^{-1} x-\frac{1}{2} \log \left|1+x^{2}\right|+\mathrm{C} \\
& =x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+\mathrm{C}
\end{aligned}
$$

Question 14:

$x(\log x)^{2}$
Answer

$$
I=\int x(\log x)^{2} d x
$$

Taking $(\log x)^{2}$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{aligned}
I & =(\log x)^{2} \int x d x-\int\left[\left\{\left(\frac{d}{d x} \log x\right)^{2}\right\} \int x d x\right] d x \\
& =\frac{x^{2}}{2}(\log x)^{2}-\left[\int 2 \log x \cdot \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\int x \log x d x
\end{aligned}
$$

Again integrating by parts, we obtain

$$
\begin{aligned}
I & =\frac{x^{2}}{2}(\log x)^{2}-\left[\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\left[\frac{x^{2}}{2}-\log x-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right] \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{1}{2} \int x d x \\
& =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4}+C
\end{aligned}
$$

Question 15:
$\left(x^{2}+1\right) \log x$
Answer
Let $I=\int\left(x^{2}+1\right) \log x d x=\int x^{2} \log x d x+\int \log x d x$
Let $I=I_{1}+I_{2} \ldots$ (1)
Where, $I_{1}=\int x^{2} \log x d x$ and $I_{2}=\int \log x d x$
$I_{1}=\int x^{2} \log x d x$
Taking $\log x$ as first function and x^{2} as second function and integrating by parts, we obtain

$$
\begin{align*}
I_{1} & =\log x-\int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x \\
& =\log x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x \\
& =\frac{x^{3}}{3} \log x-\frac{1}{3}\left(\int x^{2} d x\right) \\
& =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+\mathrm{C}_{1} \tag{2}\\
I_{2} & =\int \log x d x
\end{align*}
$$

Taking $\log x$ as first function and 1 as second function and integrating by parts, we obtain

$$
\begin{align*}
I_{2} & =\log x \int 1 \cdot d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int 1 \cdot d x\right\} \\
& =\log x \cdot x-\int \frac{1}{x} \cdot x d x \\
& =x \log x-\int 1 d x \\
& =x \log x-x+\mathrm{C}_{2} \tag{3}
\end{align*}
$$

Using equations (2) and (3) in (1), we obtain

$$
\begin{aligned}
I & =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+\mathrm{C}_{1}+x \log x-x+\mathrm{C}_{2} \\
& =\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+x \log x-x+\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \\
& =\left(\frac{x^{3}}{3}+x\right) \log x-\frac{x^{3}}{9}-x+\mathrm{C}
\end{aligned}
$$

Question 16:

$e^{x}(\sin x+\cos x)$
Answer
Let $I=\int e^{x}(\sin x+\cos x) d x$
Let $f(x)=\sin x$
$\square f^{\prime}(x)=\cos x$
$\square I=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore I=e^{x} \sin x+C$

Question 17:
$\frac{x e^{x}}{(1+x)^{2}}$

Answer
Let $I=\int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{\frac{x}{(1+x)^{2}}\right\} d x$
$=\int e^{x}\left\{\frac{1+x-1}{(1+x)^{2}}\right\} d x$
$=\int e^{x}\left\{\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right\} d x$
Let $f(x)=\frac{1}{1+x} \square f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$
$\Rightarrow \int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore \int \frac{x e^{x}}{(1+x)^{2}} d x=\frac{e^{x}}{1+x}+\mathrm{C}$

Question 18:
$e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)$
Answer
$e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)$
$=e^{x}\left(\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right)$
$=\frac{e^{x}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}$
$=\frac{1}{2} e^{x} \cdot\left(\frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\cos \frac{x}{2}}\right)^{2}$
$=\frac{1}{2} e^{x}\left[\tan \frac{x}{2}+1\right]^{2}$
$=\frac{1}{2} e^{2}\left(1+\tan \frac{x}{2}\right)^{2}$
$=\frac{1}{2} e^{x}\left[1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]$
$=\frac{1}{2} e^{x}\left[\sec ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]$
$\frac{e^{x}(1+\sin x) d x}{(1+\cos x)}=e^{x}\left[\frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right]$
Let $\tan \frac{x}{2}=f(x) \quad f^{\prime}(x)=\frac{1}{2} \sec ^{2} \frac{x}{2}$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
From equation (1), we obtain
$\int \frac{e^{x}(1+\sin x)}{(1+\cos x)} d x=e^{x} \tan \frac{x}{2}+\mathrm{C}$
Question 19:
$e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)$
Answer
Let $I=\int e^{x}\left[\frac{1}{x}-\frac{1}{x^{2}}\right] d x$
Also, let $\frac{1}{x}=f(x)_{\square} f^{\prime}(x)=\frac{-1}{x^{2}}$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore I=\frac{e^{x}}{x}+\mathrm{C}$

Question 20:
$\frac{(x-3) e^{x}}{(x-1)^{3}}$
Answer

$$
\begin{aligned}
& \begin{aligned}
\int e^{x}\left\{\frac{x-3}{(x-1)^{3}}\right\} d x & =\int e^{x}\left\{\frac{x-1-2}{(x-1)^{3}}\right\} d x \\
& =\int e^{x}\left\{\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right\} d x
\end{aligned} \\
& \text { Let } f(x)=\frac{1}{(x-1)^{2}} \quad f^{\prime}(x)=\frac{-2}{(x-1)^{3}}
\end{aligned}
$$

It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore \int e^{x}\left\{\frac{(x-3)}{(x-1)^{2}}\right\} d x=\frac{e^{x}}{(x-1)^{2}}+\mathrm{C}$

Question 21:
$e^{2 x} \sin x$
Answer

Let $I=\int e^{2 x} \sin x d x$
Integrating by parts, we obtain
$I=\sin x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \sin x\right) \int e^{2 x} d x\right\} d x$
$\Rightarrow I=\sin x \cdot \frac{e^{2 x}}{2}-\int \cos x \cdot \frac{e^{2 x}}{2} d x$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2} \int e^{2 x} \cos x d x$
Again integrating by parts, we obtain
$I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\cos x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \cos x\right) \int e^{2 x} d x\right\} d x\right]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \cdot \frac{e^{2 x}}{2}-\int(-\sin x) \frac{e^{2 x}}{2} d x\right]$
$\Rightarrow I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\frac{e^{2 x} \cos x}{2}+\frac{1}{2} \int e^{2 x} \sin x d x\right]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}-\frac{1}{4} I$
[From (1)]
$\Rightarrow I+\frac{1}{4} I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{e^{2 x} \cos x}{4}$
$\Rightarrow \frac{5}{4} I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}$
$\Rightarrow I=\frac{4}{5}\left[\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}\right]+\mathrm{C}$
$\Rightarrow I=\frac{e^{2 x}}{5}[2 \sin x-\cos x]+\mathrm{C}$

Question 22:
$\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
Answer
Let $x=\tan \theta \square d x=\sec ^{2} \theta d \theta$
$\therefore \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\int \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=\int 2 \theta \cdot \sec ^{2} \theta d \theta=2 \int \theta \cdot \sec ^{2} \theta d \theta$
Integrating by parts, we obtain
$2\left[\theta \cdot \int \sec ^{2} \theta d \theta-\int\left\{\left(\frac{d}{d \theta} \theta\right) \int \sec ^{2} \theta d \theta\right\} d \theta\right]$
$=2\left[\theta \cdot \tan \theta-\int \tan \theta d \theta\right]$
$=2[\theta \tan \theta+\log |\cos \theta|]+\mathrm{C}$
$=2\left[x \tan ^{-1} x+\log \left|\frac{1}{\sqrt{1+x^{2}}}\right|\right]+\mathrm{C}$
$=2 x \tan ^{-1} x+2 \log \left(1+x^{2}\right)^{-\frac{1}{2}}+\mathrm{C}$
$=2 x \tan ^{-1} x+2\left[-\frac{1}{2} \log \left(1+x^{2}\right)\right]+\mathrm{C}$
$=2 x \tan ^{-1} x-\log \left(1+x^{2}\right)+C$

Question 23:
$\int x^{2} e^{x^{3}} d x$ equals
(A) $\frac{1}{3} e^{x^{3}}+\mathrm{C}$
(B) $\frac{1}{3} e^{x^{2}}+\mathrm{C}$
(C) $\frac{1}{2} e^{x^{3}}+\mathrm{C}$
(D) $\frac{1}{3} e^{x^{2}}+\mathrm{C}$

Answer
Let $I=\int x^{2} e^{x^{3}} d x$
Also, let $x^{3}=t \square 3 x^{2} d x=d t$

$$
\begin{aligned}
\Rightarrow I & =\frac{1}{3} \int e^{t} d t \\
& =\frac{1}{3}\left(e^{t}\right)+\mathrm{C} \\
& =\frac{1}{3} e^{x^{3}}+\mathrm{C}
\end{aligned}
$$

Hence, the correct Answer is A.

Question 24:
$\int e^{x} \sec x(1+\tan x) d x$ equals
(A) $e^{x} \cos x+C$
(B) $e^{x} \sec x+C$
(C) $e^{x} \sin x+\mathrm{C}$
(D) $e^{x} \tan x+\mathrm{C}$

Answer
$\int e^{x} \sec x(1+\tan x) d x$
Let $I=\int e^{x} \sec x(1+\tan x) d x=\int e^{x}(\sec x+\sec x \tan x) d x$
Also, let $\sec x=f(x)_{\square} \sec x \tan x=f^{\prime}(x)$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore I=e^{x} \sec x+\mathrm{C}$
Hence, the correct Answer is B.

