Question 1:
$\int_{-1}^{1}(x+1) d x$
Answer
Let $I=\int_{-1}^{1}(x+1) d x$
$\int(x+1) d x=\frac{x^{2}}{2}+x=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(-1) \\
& =\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right) \\
& =\frac{1}{2}+1-\frac{1}{2}+1 \\
& =2
\end{aligned}
$$

Question 2:
$\int_{2}^{3} \frac{1}{x} d x$
Answer
Let $I=\int_{2}^{3} \frac{1}{x} d x$

$$
\int \frac{1}{x} d x=\log |x|=\mathrm{F}(x)
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(3)-\mathrm{F}(2) \\
& =\log |3|-\log |2|=\log \frac{3}{2}
\end{aligned}
$$

Question 3:
$\int^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$
Answer
Let $I=\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$

$$
\begin{aligned}
\int\left(4 x^{3}-5 x^{2}+6 x+9\right) d x & =4\left(\frac{x^{4}}{4}\right)-5\left(\frac{x^{3}}{3}\right)+6\left(\frac{x^{2}}{2}\right)+9(x) \\
& =x^{4}-\frac{5 x^{3}}{3}+3 x^{2}+9 x=\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(2)-\mathrm{F}(1) \\
I & =\left\{2^{4}-\frac{5 \cdot(2)^{3}}{3}+3(2)^{2}+9(2)\right\}-\left\{(1)^{4}-\frac{5(1)^{3}}{3}+3(1)^{2}+9(1)\right\} \\
& =\left(16-\frac{40}{3}+12+18\right)-\left(1-\frac{5}{3}+3+9\right) \\
& =16-\frac{40}{3}+12+18-1+\frac{5}{3}-3-9 \\
& =33-\frac{35}{3} \\
& =\frac{99-35}{3} \\
& =\frac{64}{3}
\end{aligned}
$$

Question 4:

$\int_{0}^{\frac{\pi}{4}} \sin 2 x d x$
Answer
Let $I=\int_{0}^{\pi} \sin 2 x d x$
$\int \sin 2 x d x=\left(\frac{-\cos 2 x}{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}(0) \\
& =-\frac{1}{2}\left[\cos 2\left(\frac{-}{4}\right)-\cos 0\right] \\
& =-\frac{1}{2}\left[\cos \left(\frac{-}{2}\right)-\cos 0\right] \\
& =-\frac{1}{2}[0-1] \\
& =\frac{1}{2}
\end{aligned}
$$

Question 5:
$\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
Answer
Let $I=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
$\int \cos 2 x d x=\left(\frac{\sin 2 x}{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{2}\right)-\mathrm{F}(0) \\
& =\frac{1}{2}\left[\sin 2\left(\frac{\pi}{2}\right)-\sin 0\right] \\
& =\frac{1}{2}[\sin \pi-\sin 0] \\
& =\frac{1}{2}[0-0]=0
\end{aligned}
$$

Question 6:
$\int_{4}^{5} e^{x} d x$
Answer

Let $I=\int_{4}^{5} e^{x} d x$
$\int e^{x} d x=e^{x}=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(5)-\mathrm{F}(4) \\
& =e^{5}-e^{4} \\
& =e^{4}(e-1)
\end{aligned}
$$

Question 7:
$\int_{0}^{\frac{\pi}{4}} \tan x d x$
Answer
Let $I=\int_{0}^{\frac{\pi}{4}} \tan x d x$
$\int \tan x d x=-\log |\cos x|=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain
$I=\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}(0)$
$=-\log \left|\cos \frac{\pi}{4}\right|+\log |\cos 0|$
$=-\log \left|\frac{1}{\sqrt{2}}\right|+\log |1|$
$=-\log (2)^{-\frac{1}{2}}$
$=\frac{1}{2} \log 2$

Question 8:
$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x$
Answer

Let $I=\int_{\frac{x}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x$
$\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain
$I=\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}\left(\frac{\pi}{6}\right)$
$=\log \left|\operatorname{cosec} \frac{\pi}{4}-\cot \frac{\pi}{4}\right|-\log \left|\operatorname{cosec} \frac{\pi}{6}-\cot \frac{\pi}{6}\right|$
$=\log |\sqrt{2}-1|-\log |2-\sqrt{3}|$
$=\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)$

Question 9:
$\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
Answer
Let $I=\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
$\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\sin ^{-1}(1)-\sin ^{-1}(0) \\
& =\frac{\pi}{2}-0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

Question 10:
$\int_{0}^{1} \frac{d x}{1+x^{2}}$

Answer
Let $I=\int_{0}^{1} \frac{d x}{1+x^{2}}$
$\int \frac{d x}{1+x^{2}}=\tan ^{-1} x=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\tan ^{-1}(1)-\tan ^{-1}(0) \\
& =\frac{\pi}{4}
\end{aligned}
$$

Question 11:

$\int_{2}^{3} \frac{d x}{x^{2}-1}$
Answer
Let $I=\int_{2}^{3} \frac{d x}{x^{2}-1}$
$\int \frac{d x}{x^{2}-1}=\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(3)-\mathrm{F}(2) \\
& =\frac{1}{2}\left[\log \left|\frac{3-1}{3+1}\right|-\log \left|\frac{2-1}{2+1}\right|\right] \\
& =\frac{1}{2}\left[\log \left|\frac{2}{4}\right|-\log \left|\frac{1}{3}\right|\right] \\
& =\frac{1}{2}\left[\log \frac{1}{2}-\log \frac{1}{3}\right] \\
& =\frac{1}{2}\left[\log \frac{3}{2}\right]
\end{aligned}
$$

Question 12:

$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
Answer
Let $I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
$\int \cos ^{2} x d x=\int\left(\frac{1+\cos 2 x}{2}\right) d x=\frac{x}{2}+\frac{\sin 2 x}{4}=\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\left[\mathrm{F}\left(\frac{\pi}{2}\right)-\mathrm{F}(0)\right] \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}-\frac{\sin \pi}{2}\right)-\left(0+\frac{\sin 0}{2}\right)\right] \\
& =\frac{1}{2}\left[\frac{\pi}{2}+0-0-0\right] \\
& =\frac{\pi}{4}
\end{aligned}
$$

Question 13:
$\int_{2}^{3} \frac{x d x}{x^{2}+1}$
Answer
Let $I=\int_{2}^{3} \frac{x}{x^{2}+1} d x$
$\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x=\frac{1}{2} \log \left(1+x^{2}\right)=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(3)-\mathrm{F}(2) \\
& =\frac{1}{2}\left[\log \left(1+(3)^{2}\right)-\log \left(1+(2)^{2}\right)\right] \\
& =\frac{1}{2}[\log (10)-\log (5)] \\
& =\frac{1}{2} \log \left(\frac{10}{5}\right)=\frac{1}{2} \log 2
\end{aligned}
$$

Question 14:
$\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x$
Answer
Let $I=\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x$

$$
\begin{aligned}
\int \frac{2 x+3}{5 x^{2}+1} d x & =\frac{1}{5} \int \frac{5(2 x+3)}{5 x^{2}+1} d x \\
& =\frac{1}{5} \int \frac{10 x+15}{5 x^{2}+1} d x \\
& =\frac{1}{5} \int \frac{10 x}{5 x^{2}+1} d x+3 \int \frac{1}{5 x^{2}+1} d x \\
& =\frac{1}{5} \int \frac{10 x}{5 x^{2}+1} d x+3 \int \frac{1}{5\left(x^{2}+\frac{1}{5}\right)} d x \\
& =\frac{1}{5} \log \left(5 x^{2}+1\right)+\frac{3}{5} \cdot \frac{1}{\frac{1}{\sqrt{5}}} \tan ^{-1} \frac{x}{\frac{1}{\sqrt{5}}} \\
& =\frac{1}{5} \log \left(5 x^{2}+1\right)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5} x) \\
& =\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\left\{\frac{1}{5} \log (5+1)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5})\right\}-\left\{\frac{1}{5} \log (1)+\frac{3}{\sqrt{5}} \tan ^{-1}(0)\right\} \\
& =\frac{1}{5} \log 6+\frac{3}{\sqrt{5}} \tan ^{-1} \sqrt{5}
\end{aligned}
$$

Question 15:

$\int_{0}^{1} x e^{x^{2}} d x$
Answer

Let $I=\int_{0}^{1} x e^{x^{2}} d x$
Put $x^{2}=t \Rightarrow 2 x d x=d t$
As $x \rightarrow 0, t \rightarrow 0$ and as $x \rightarrow 1, t \rightarrow 1$,
$\therefore I=\frac{1}{2} \int_{0}^{1} e^{t} d t$
$\frac{1}{2} \int e^{t} d t=\frac{1}{2} e^{t}=\mathrm{F}(t)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\frac{1}{2} e-\frac{1}{2} e^{0} \\
& =\frac{1}{2}(e-1)
\end{aligned}
$$

Question 16:

$$
\int_{0}^{1} \frac{5 x^{2}}{x^{2}+4 x+3}
$$

Answer
Let $I=\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} d x$
Dividing $5 x^{2}$ by $x^{2}+4 x+3$, we obtain

$$
\begin{align*}
I & =\int_{1}^{2}\left\{5-\frac{20 x+15}{x^{2}+4 x+3}\right\} d x \\
& =\int_{1}^{2} 5 d x-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x \\
& =[5 x]_{1}^{2}-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x \\
I & =5-I_{1}, \text { where } I=\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3} d x \tag{1}
\end{align*}
$$

Consider $I_{1}=\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+8} d x$
Let $20 x+15=\mathrm{A} \frac{d}{d x}\left(x^{2}+4 x+3\right)+\mathrm{B}$

$$
=2 A x+(4 A+B)
$$

Equating the coefficients of x and constant term, we obtain
$A=10$ and $B=-25$
$\Rightarrow I_{1}=10 \int_{1}^{2} \frac{2 x+4}{x^{2}+4 x+3} d x-25 \int_{1}^{2} \frac{d x}{x^{2}+4 x+3}$
Let $x^{2}+4 x+3=t$
$\Rightarrow(2 x+4) d x=d t$
$\Rightarrow I_{1}=10 \int \frac{d t}{t}-25 \int \frac{d x}{(x+2)^{2}-1^{2}}$
$=10 \log t-25\left[\frac{1}{2} \log \left(\frac{x+2-1}{x+2+1}\right)\right]$
$=\left[10 \log \left(x^{2}+4 x+3\right)\right]_{1}^{2}-25\left[\frac{1}{2} \log \left(\frac{x+1}{x+3}\right)\right]_{1}^{2}$
$=[10 \log 15-10 \log 8]-25\left[\frac{1}{2} \log \frac{3}{5}-\frac{1}{2} \log \frac{2}{4}\right]$
$=[10 \log (5 \times 3)-10 \log (4 \times 2)]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]$
$=[10 \log 5+10 \log 3-10 \log 4-10 \log 2]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]$
$=\left[10+\frac{25}{2}\right] \log 5+\left[-10-\frac{25}{2}\right] \log 4+\left[10-\frac{25}{2}\right] \log 3+\left[-10+\frac{25}{2}\right] \log 2$
$=\frac{45}{2} \log 5-\frac{45}{2} \log 4-\frac{5}{2} \log 3+\frac{5}{2} \log 2$
$=\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}$
Substituting the value of I_{1} in (1), we obtain

$$
\begin{aligned}
I & =5-\left[\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}\right] \\
& =5-\frac{5}{2}\left[9 \log \frac{5}{4}-\log \frac{3}{2}\right]
\end{aligned}
$$

Question 17:
$\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$
Answer
Let $I=\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$
$\int\left(2 \sec ^{2} x+x^{3}+2\right) d x=2 \tan x+\frac{x^{4}}{4}+2 x=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}(0) \\
& =\left\{\left(2 \tan \frac{\pi}{4}+\frac{1}{4}\left(\frac{\pi}{4}\right)^{4}+2\left(\frac{\pi}{4}\right)\right)-(2 \tan 0+0+0)\right\} \\
& =2 \tan \frac{\pi}{4}+\frac{\pi^{4}}{4^{5}}+\frac{\pi}{2} \\
& =2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}
\end{aligned}
$$

Question 18:
$\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$
Answer

$$
\text { Let } \begin{aligned}
I & =\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x \\
& =-\int_{0}^{\pi}\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right) d x \\
& =-\int_{0}^{\pi} \cos x d x
\end{aligned}
$$

$\int \cos x d x=\sin x=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(\pi)-\mathrm{F}(0) \\
& =\sin \pi-\sin 0 \\
& =0
\end{aligned}
$$

Question 19:
$\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$
Answer
Let $I=\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$

$$
\int \frac{6 x+3}{x^{2}+4} d x=3 \int \frac{2 x+1}{x^{2}+4} d x
$$

$$
=3 \int \frac{2 x}{x^{2}+4} d x+3 \int \frac{1}{x^{2}+4} d x
$$

$$
=3 \log \left(x^{2}+4\right)+\frac{3}{2} \tan ^{-1} \frac{x}{2}=\mathrm{F}(x)
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(2)-\mathrm{F}(0) \\
& =\left\{3 \log \left(2^{2}+4\right)+\frac{3}{2} \tan ^{-1}\left(\frac{2}{2}\right)\right\}-\left\{3 \log (0+4)+\frac{3}{2} \tan ^{-1}\left(\frac{0}{2}\right)\right\} \\
& =3 \log 8+\frac{3}{2} \tan ^{-1} 1-3 \log 4-\frac{3}{2} \tan ^{-1} 0 \\
& =3 \log 8+\frac{3}{2}\left(\frac{\pi}{4}\right)-3 \log 4-0 \\
& =3 \log \left(\frac{8}{4}\right)+\frac{3 \pi}{8} \\
& =3 \log 2+\frac{3 \pi}{8}
\end{aligned}
$$

Question 20:
$\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$
Answer
Let $I=\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$

$$
\begin{aligned}
\int\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x & =x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^{x} d x\right\} d x+\left\{\frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}}\right\} \\
& =x e^{x}-\int e^{x} d x-\frac{4 \pi}{\pi} \cos \frac{x}{4} \\
& =x e^{x}-e^{x}-\frac{4 \pi}{\pi} \cos \frac{x}{4} \\
& =\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
I & =\mathrm{F}(1)-\mathrm{F}(0) \\
& =\left(1 \cdot e^{1}-e^{1}-\frac{4}{\pi} \cos \frac{\pi}{4}\right)-\left(0 . e^{0}-e^{0}-\frac{4}{\pi} \cos 0\right) \\
& =e-e-\frac{4}{\pi}\left(\frac{1}{\sqrt{2}}\right)+1+\frac{4}{\pi} \\
& =1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}
\end{aligned}
$$

Question 21:
$\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}$ equals
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{12}$

Answer

$$
\int \frac{d x}{1+x^{2}}=\tan ^{-1} x=\mathrm{F}(x)
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}} & =\mathrm{F}(\sqrt{3})-\mathrm{F}(1) \\
& =\tan ^{-1} \sqrt{3}-\tan ^{-1} 1 \\
& =\frac{\pi}{3}-\frac{\pi}{4} \\
& =\frac{\pi}{12}
\end{aligned}
$$

Hence, the correct Answer is D.

Question 22:
$\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}$ equals
A. $\frac{\pi}{6}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{24}$
D. $\frac{\pi}{4}$

Answer

$$
\int \frac{d x}{4+9 x^{2}}=\int \frac{d x}{(2)^{2}+(3 x)^{2}}
$$

Put $3 x=t \Rightarrow 3 d x=d t$

$$
\begin{aligned}
\therefore \int \frac{d x}{(2)^{2}+(3 x)^{2}} & =\frac{1}{3} \int \frac{d t}{(2)^{2}+t^{2}} \\
& =\frac{1}{3}\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right] \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{2}\right) \\
& =\mathrm{F}(x)
\end{aligned}
$$

By second fundamental theorem of calculus, we obtain

$$
\begin{aligned}
\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}} & =\mathrm{F}\left(\frac{2}{3}\right)-\mathrm{F}(0) \\
& =\frac{1}{6} \tan ^{-1}\left(\frac{3}{2} \cdot \frac{2}{3}\right)-\frac{1}{6} \tan ^{-1} 0 \\
& =\frac{1}{6} \tan ^{-1} 1-0 \\
& =\frac{1}{6} \times \frac{\pi}{4} \\
& =\frac{\pi}{24}
\end{aligned}
$$

Hence, the correct Answer is C.

