Memoryslcub.com

Exercise 8.1

Question 1:

Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis.

Answer

The area of the region bounded by the curve, $y^{2}=x$, the lines, $x=1$ and $x=4$, and the x-axis is the area $A B C D$.

$$
\begin{aligned}
\text { Area of } \mathrm{ABCD} & =\int_{1}^{4} y d x \\
& =\int^{4} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \\
& =\frac{2}{3}\left[(4)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right] \\
& =\frac{2}{3}[8-1] \\
& =\frac{14}{3} \text { units }
\end{aligned}
$$

Question 2:

Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.
Answer

The area of the region bounded by the curve, $y^{2}=9 x, x=2$, and $x=4$, and the x-axis is the area $A B C D$.

$$
\begin{aligned}
\text { Area of } \mathrm{ABCD} & =\int_{2}^{4} y d x \\
& =\int_{2}^{4} 3 \sqrt{x} d x \\
& =3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left[x^{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right] \\
& =2[8-2 \sqrt{2}] \\
& =(16-4 \sqrt{2}) \text { units }
\end{aligned}
$$

Question 3:

Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

Answer

The area of the region bounded by the curve, $x^{2}=4 y, y=2$, and $y=4$, and the y-axis is the area ABCD.

$$
\text { Area of } \begin{aligned}
\mathrm{ABCD} & =\int_{2}^{4} x d y \\
& =\int_{2}^{4} 2 \sqrt{y} d y \\
& =2 \int_{2}^{4} \sqrt{y} d y \\
& =2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =\frac{4}{3}\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right] \\
& =\frac{4}{3}[8-2 \sqrt{2}] \\
& =\left(\frac{32-8 \sqrt{2}}{3}\right) \text { units }
\end{aligned}
$$

Question 4:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Answer
The given equation of the ellipse, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area of OAB

$$
\begin{aligned}
\text { Area of } \mathrm{OAB} & =\int_{0}^{4} y d x \\
& =\int_{0}^{4} 3 \sqrt{1-\frac{x^{2}}{16}} d x \\
& =\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x \\
& =\frac{3}{4}\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4} \\
& =\frac{3}{4}\left[2 \sqrt{16-16}+8 \sin ^{-1}(1)-0-8 \sin ^{-1}(0)\right] \\
& =\frac{3}{4}\left[\frac{8 \pi}{2}\right] \\
& =\frac{3}{4}[4 \pi] \\
& =3 \pi
\end{aligned}
$$

Therefore, area bounded by the ellipse $=4 \times 3 \pi=12 \pi$ units

Question 5:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
Answer
The given equation of the ellipse can be represented as

$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
$\Rightarrow y=3 \sqrt{1-\frac{x^{2}}{4}}$
It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area OAB

$$
\begin{aligned}
\therefore \text { Area of } \mathrm{OAB} & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} 3 \sqrt{1-\frac{x^{2}}{4}} d x \quad[\text { Using (1)] } \\
& =\frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{3}{2}\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-} \frac{x}{2}\right]_{0}^{2} \\
& =\frac{3}{2}\left[\frac{2 \pi}{2}\right] \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

Therefore, area bounded by the ellipse $=4 \times \frac{3 \pi}{2}=6 \pi$ units

Question 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$

Answer

The area of the region bounded by the circle, $x^{2}+y^{2}=4, x=\sqrt{3} y$, and the x-axis is the area OAB.

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3}, 1)$. Area $O A B=$ Area $\triangle O C A+$ Area $A C B$

Area of $\mathrm{OAC}=\frac{1}{2} \times \mathrm{OC} \times \mathrm{AC}=\frac{1}{2} \times \sqrt{3} \times 1=\frac{\sqrt{3}}{2}$
Area of $\mathrm{ABC}=\int_{\sqrt{3}}^{2} y d x$

$$
\begin{aligned}
& =\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{\sqrt{3}}^{2} \\
& =\left[2 \times \frac{\pi}{2}-\frac{\sqrt{3}}{2} \sqrt{4-3}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]
\end{aligned}
$$

$$
=\left[\pi-\frac{\sqrt{3} \pi}{2}-2\left(\frac{}{3}\right)\right]
$$

$$
=\left[\pi-\frac{\sqrt{3}}{2}-\frac{2 \pi}{3}\right]
$$

$$
\begin{equation*}
=\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right] \tag{2}
\end{equation*}
$$

Therefore, area enclosed by x-axis, the line $x=\sqrt{3} y$, and the circle $x^{2}+y^{2}=4$ in the first quadrant $=\frac{\sqrt{3} \pi}{2}+\frac{3 \sqrt{3}}{3}-\frac{\pi}{2}=\frac{-}{3}$ units

Question 7:

Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$ Answer

The area of the smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is the area ABCDA.

It can be observed that the area $A B C D$ is symmetrical about x-axis.
\therefore Area $A B C D=2 \times$ Area $A B C$

Area of $A B C=\int_{\frac{a}{\sqrt{2}}}^{a} y d x$

$$
\begin{aligned}
& =\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{\frac{a}{\sqrt{2}}}^{a} \\
& =\left[\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)-\frac{a}{2 \sqrt{2}} \sqrt{a^{2}-\frac{a^{2}}{2}}-\frac{a^{2}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right] \\
& =\frac{a^{2} \pi}{4}-\frac{a}{2 \sqrt{2}} \cdot \frac{a}{\sqrt{2}}-\frac{a^{2}}{2}\left(\frac{\pi}{4}\right) \\
& =\frac{a^{2} \pi}{4}-\frac{a^{2}}{4}-\frac{a^{2} \pi}{8} \\
& =\frac{a^{2}}{4}\left[\pi-1-\frac{\pi}{2}\right] \\
& =\frac{a^{2}}{4}\left[\frac{\pi}{2}-1\right]
\end{aligned}
$$

\Rightarrow Area $A B C D=2\left[\frac{a^{2}}{4}\left(\frac{\pi}{2}-1\right)\right]=\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$

Therefore, the area of smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ units.

Question 8:

The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
Answer
The line, $x=a$, divides the area bounded by the parabola and $x=4$ into two equal parts.
\therefore Area $O A D=$ Area $A B C D$

It can be observed that the given area is symmetrical about x-axis.
\Rightarrow Area OED $=$ Area EFCD

$$
\begin{align*}
\text { Area } \begin{aligned}
O E D & =\int_{0}^{a} y d x \\
& =\int_{0}^{a} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a} \\
& =\frac{2}{3}(a)^{\frac{3}{2}}
\end{aligned} .=\text {. }
\end{align*}
$$

Area of $E F C D=\int_{0}^{4} \sqrt{x} d x$

$$
\begin{align*}
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4} \\
& =\frac{2}{3}\left[8-a^{\frac{3}{2}}\right] \tag{2}
\end{align*}
$$

From (1) and (2), we obtain
$\frac{2}{3}(a)^{\frac{3}{2}}=\frac{2}{3}\left[8-(a)^{\frac{3}{2}}\right]$
$\Rightarrow 2 \cdot(a)^{\frac{3}{2}}=8$
$\Rightarrow(a)^{\frac{3}{2}}=4$
$\Rightarrow a=(4)^{\frac{2}{3}}$
Therefore, the value of a is $(4)^{\frac{2}{3}}$.

Question 9:

Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$
Answer
The area bounded by the parabola, $x^{2}=y$, and the line, $y=|x|$, can be represented as

The given area is symmetrical about y-axis.
\therefore Area $\mathrm{OACO}=$ Area ODBO

The point of intersection of parabola, $x^{2}=y$, and line, $y=x$, is $A(1,1)$.
Area of $\mathrm{OACO}=$ Area $\triangle \mathrm{OAB}-$ Area OBACO
\therefore Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OB} \times \mathrm{AB}=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
Area of OBACO $=\int_{0}^{1} y d x=\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$
\Rightarrow Area of $\mathrm{OACO}=$ Area of $\triangle \mathrm{OAB}-$ Area of $O B A C O$

$$
\begin{aligned}
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

Therefore, required area $=2\left[\frac{1}{6}\right]=\frac{1}{3}$ units

Question 10:

Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$
Answer
The area bounded by the curve, $x^{2}=4 y$, and line, $x=4 y-2$, is represented by the shaded area OBAO.

Let A and B be the points of intersection of the line and parabola.
Coordinates of point A are $\left(-1, \frac{1}{4}\right)$
Coordinates of point B are $(2,1)$.
We draw AL and BM perpendicular to x-axis.
It can be observed that,
Area OBAO = Area OBCO + Area OACO ... (1)
Then, Area $\mathrm{OBCO}=$ Area OMBC - Area OMBO
$=\int_{0}^{2} \frac{x+2}{4} d x-\int_{0}^{2} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{0}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{2}$
$=\frac{1}{4}[2+4]-\frac{1}{4}\left[\frac{8}{3}\right]$
$=\frac{3}{2}-\frac{2}{3}$
$=\frac{5}{6}$
Similarly, Area OACO = Area OLAC - Area OLAO

$$
\begin{aligned}
& =\int_{-1}^{0} \frac{x+2}{4} d x-\int_{-1}^{0} \frac{x^{2}}{4} d x \\
& =\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{0}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{0} \\
& =-\frac{1}{4}\left[\frac{(-1)^{2}}{2}+2(-1)\right]-\left[-\frac{1}{4}\left(\frac{(-1)^{3}}{3}\right)\right] \\
& =-\frac{1}{4}\left[\frac{1}{2}-2\right]-\frac{1}{12} \\
& =\frac{1}{2}-\frac{1}{8}-\frac{1}{12} \\
& =\frac{7}{24}
\end{aligned}
$$

Therefore, required area $=\left(\frac{5}{6}+\frac{7}{24}\right)=\frac{9}{8}$ units

Question 11:

Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$
Answer
The region bounded by the parabola, $y^{2}=4 x$, and the line, $x=3$, is the area OACO.

The area OACO is symmetrical about x-axis.

$$
\therefore \text { Area of } O A C O=2(\text { Area of } O A B)
$$

$$
\begin{aligned}
\text { Area } \mathrm{OACO} & =2\left[\int_{0}^{3} y d x\right] \\
& =2 \int_{0}^{3} 2 \sqrt{x} d x \\
& =4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3} \\
& =\frac{8}{3}\left[(3)^{\frac{3}{2}}\right] \\
& =8 \sqrt{3}
\end{aligned}
$$

Therefore, the required area is $8 \sqrt{3}$ units.

Question 12:

Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. $п$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer

The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{2} y d x$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=2\left(\frac{\pi}{2}\right)$
$=\pi$ units
Thus, the correct answer is A.

Question 13:

Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer
The area bounded by the curve, $y^{2}=4 x, y$-axis, and $y=3$ is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{3} x d y$
$=\int_{0}^{3} \frac{y^{2}}{4} d y$
$=\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3}$
$=\frac{1}{12}(27)$
$=\frac{9}{4}$ units
Thus, the correct answer is B.

