Class XII Chapter 9 - Differential Equations Maths

v=e"+I1 oy =y =1
Answer
y=e" +1

Differentiating both sides of this equation with respect to x, we get:

dv d

- = =" +1]

dx (.":r(c }I

=y =e LA

Now, differentiating equation (1) with respect to x, we get:

e ()= d{c?T}

E dr

=y =¢

Substituting the values of 3" and 1" in the given differential equation, we get the L.H.S.

as:
Y-y =e -e" =0=RHS.

Thus, the given function is the solution of the corresponding differential equation.

y=x"+2x+C Dy =2x-2=10
Answer
y=x +2x4+C

Differentiating both sides of this equation with respect to x, we get:

y = ;—i{x +2x+C)

=y =2x+2
Substituting the value of ¥'in the given differential equation, we get:

LHS. =)' -2x—-2=2x+2-2x-2=0= R.H.S.

Hence, the given function is the solution of the corresponding differential equation.
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yv=cosx+C Dy +sinx =0
Answer
y=cosx+C

Differentiating both sides of this equation with respect to x, we get:

d )
V'=—0/(cosx+C
V=L (cosvsc)

= V' =—sinx
Substituting the value of ' in the given differential equation, we get:

LH.S. = 3" +sinx=—sinx+sinx=0= RH.S.
Hence, the given function is the solution of the corresponding differential equation.

— . XV
p=1+x =
1+ x
Answer
R
! =+/l+x

Differentiating both sides of the equation with respect to x, we get:
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¥ = —|1+x
2J1+x7 dx
. 2x
.1I. = Y
201+ 27
, X
.]' = -
Jl+x
0 X f ]
=y = w1+
[+x°
¥ X
=y = )
[+x°
' Xy
=¥V =—
l+x
“+L.H.S. = R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

v =Ax c ox'=y(x#0)

Differentiating both sides with respect to x, we get:
d

p' = —( Ax)

. u’x{ )

=y =A

Substituting the value of y'in the given differential equation, we get:
LHS.=xy'=x-A=Ar=y=RHS.

Hence, the given function is the solution of the corresponding differential equation.

] 1
y=xsmnx XY =3+ ,'l.'\;'.\‘" -V (,'r #0and x> yorxy< —_1"]
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Class XII
Answer

¥=xsinx
Differentiating both sides of this equation with respect to x, we get:

V= i{.‘(’Hil].‘L‘]
el
, B d [ .
=y =sine- 2 (x) rx-2 (sinx)
dx b !

= y' =sinx + xcosx
Substituting the value of ¥'in the given differential equation, we get:

L.H.S.=xy' = x(sinx + xcos x)

XSINX+ X Ccosx

- f o
=y+x yl=smx

= y+x Ill |I/l]

= )=+,r\,_1-': —x*

=R.H.5.
Hence, the given function is the solution of the corresponding differential equation.

xy=logy+C oy =2 (xy=1)
1—xv

Answer

xy=log v+C

Differentiating both sides of this equation with respect to x, we get:
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i{\\] = i{li)g }']

dx Ty

:>,1'-i{x]+ & _1d

x-—=
dx dv oy

= y+x =lll"
¥
= vy =y
= (xy=1)y" =-y"
oY

=y =
[—xy

~+L.H.S. = R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

y—cosy=ux
Answer
V—Ccosy=x

(vsiny+cosy+x)y =y

(1)

Differentiating both sides of the equation with respect to x, we get:

= V' +siny-y =1
= y'(1+siny)=1
, 1

=y =—
I+smny

Substituting the value of y'in equation (1), we get:
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L.H.S. = (ysiny+cos y+x) )
1

=(ysiny+cosy+ y-cosy)x———
[+siny

) 1
=yll+siny)———
M : } 1 +sin y
=V
=R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

Answer
x+y=tan"'y

Differentiating both sides of this equation with respect to x, we get:

d i i
—lx+v)=—tan Vv
e ) } fr’:r{' ’ }

; | ;
=14y = — |y
1+ v

1
|
—
+

Q]
.I.!‘
S

= | ——|=1

_'h':
= V| ——|=1
1+

Substituting the value of ¥''in the given differential equation, we get:
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L A-(1+7) ]
LHS. =y y+y +l=y|—— [+ +1

']'l
=-1-y"+3" +1
=0
=R.H.5.

Hence, the given function is the solution of the corresponding differential equation.

y=va -x'xe(-a.a) : I+J’£:1}[,L'¢0]
alx
Answer

V= Jat -
Differentiating both sides of this equation with respect to x, we get:
L av)
dr oy .

dy 1 d
;‘5 _ —_—

a7

SRR
dy  2Jg* —x* dx’ :

N
" dy . . . . .
Substituting the value ofd—ln the given differential equation, we get:
»

dy —
L.H.S. = x+vy'd;]=,r+ Ja —xt x—=2
n

N
=X=-X
=0
=RH.S,

Hence, the given function is the solution of the corresponding differential equation.
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The numbers of arbitrary constants in the general solution of a differential equation of
fourth order are:

(A)O(B)2(C)3 (D)4

Answer

We know that the number of constants in the general solution of a differential equation
of order n is equal to its order.

Therefore, the number of constants in the general equation of fourth order differential

equation is four.

Hence, the correct answer is D.

The numbers of arbitrary constants in the particular solution of a differential equation of
third order are:

(A)3(B)2(C)1 (D)o

Answer

In a particular solution of a differential equation, there are no arbitrary constants.
Hence, the correct answer is D.
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